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Supervised learning

Images Labelled concepts

Scene parsing through ADE20K dataset. Zhou, Zhao, Puig, Fidler, Barriuso, Torralba. CVPR, 2017. 4

Learning without supervision

Scene parsing through ADE20K dataset. Zhou, Zhao, Puig, Fidler, Barriuso, Torralba. CVPR, 2017.

Unsupervised learning

Images
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Prediction

Bike

data x interpretation y

predictor

6

Representation

Bike

data x

Φ Φ(x)

representation z interpretation y

predictor

7

Why representations

Best practices

• layers in a deep network 

• handcrafted features 

Modularity

• task independence

• information sharing 

Unsupervised learning

• can be trained effectively 

without supervision

data x

Φ Φ(x)

representation z

8

Learning representations with supervision

Bike?

data x

Φ Φ(x)

representation z interpretation y

predictor

Loss

ground-truth ygt

Bike! error
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Using information to characterise representations

A representation should contain information relevant to the prediction task


Bike?

data x representation z interpretation y

predictor

large I(z, y)

Φ Φ(x)

10

The information bottleneck principle

Bike?

data x representation z interpretation y

predictor

large I(z, y)small I(x, z)

max
Φ

I(z, y) − βI(x, z)

The information bottleneck method. Tishby, Pereira, Bialek. Allerton Conf. on Communication, Control and Computing, 1999 
Deep learning and the information bottleneck principle. Tishby Zaslavsky. Information Theory Workshop, 2015

Φ Φ(x)
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The data processing inequality

Representations cannot create 
information





The representation should preserve 
the relevant information and discard 
the rest

I(x, y) ≥ I(z, y)

data x representation z

interpretation y

large I(z, y)

small I(x, z)

I(x, y)

Elements of Information Theory. Cover Thomas. Wiley, 2006 12

Learning representations without supervision

Lacking supervision, it is unclear what should be the aim of a representation


We require task-agnostic principles for learning them


Φ Φ(x)

data x representation z

?
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The Information Maximisation (InfoMax) principle

data x representation z interpretation y

pred

large I(z, y)small I(x, z)

Φ
Information 
Bottleneck

data x representation z

large I(x, z)

Φ
subject to additional 

constraints on zInfoMax

Self-organization in a perceptual network. Linsker. Computer, 21(3), 1988. 14

Information Bottleneck vs Maximisation

Information 
content of data x

Irrelevant to all tasksRelevant to task y

representation z

Information 
bottleneck

min I(x, z)

representation z

InfoMaxmax I(x, z)

15

Learning interpretations

Can we make representations easily 
interpretable?

Ernst Haeckel [Wikimedia Commons] 16

Clustering representations

representation space ℝd

Φ Φ(x)

representation z cluster index  c

cluster 
assignment
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Clustering vs classification

Φ Φ(x)

representation z cluster index  c

cluster 
assignment

Φ Φ(x)

class  y

classifier Bike

18

Learning a classifier via cross-entropy minimisation

Standard softmax classifier





Learning objective:


 

Cross-entropy loss





where





is the empirical distribution of the ground-truth 
labels

p(c |x) =
exp w⊤

c Φ(x)
∑k exp w⊤

k Φ(x)

min
Φ,w

H(q, p)

H(q, p) = −
1
N

N

∑
i=1

∑
c

q(c |xi)log p(c |xi)

q(c |x) = δ(c, ci)

19

Self-labelling via conditional entropy minimisation

Assume no g.t. is available


Replace the g.t. distribution with the predicted 
one





Learning objective:


 

I.e., replace the cross-entropy





with the conditional entropy





q(c |xi) ⟶ p(c |xi)

min
Φ,w

H(p, p)

H(q, p) = −
1
N

N

∑
i=1

∑
c

q(c |xi)log p(c |xi)

H(p, p) = −
1
N

N

∑
i=1

∑
c

p(c |xi)log p(c |xi) = H(c |x)

Deep clustering for unsupervised learning of visual features. Caron, Bojanowski, Joulin, Douze. Proc. ECCV, 2018. 20

Conditional entropy minimisation

min
Φ,w

H(c |x), where H(c |x) = −
1
N

N

∑
i=1

∑
c

p(c |xi)log p(c |xi)

Mode collapse
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InfoMax fixes mode collapse

Information vs. conditional entropy





Maximising information maximises the change 
in label entropy before and after observing the 
input image


The largest possible value of entropy is:


 

In practice, we can use constrained conditional 
entropy minimization:





I(x, c) = H(c) − H(c |x)
H(c) =

1
N

N

∑
i=1

∑
c

p(c |xi)ln
1
N

N

∑
j=1

p(c |xj) ≤ ln C

min
Φ,w

H(c |x), subject to H(c) = ln C

22

A practical implementation: Self-Labelling (SeLa)

Representation  Φ Label assignments q

data i

la
be

l c

1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1

1
CclassifierΦ

Cross entropy minimisation

Optimal transport (Sinkhorn)

min
q,p

H(q, p) subject to 𝔼[q(c |x)] =
1
C

Self-labelling via simultaneous clustering and representation learning. Asano, Rupprecht, Vedaldi. ICLR, 2020.


Labelling unlabelled videos from scratch with multi-modal self-supervision. Asano, Patrick, Rupprecht, Vedaldi. NeurIPS, 2020.

23

Transformation-invariant clustering

Replace predictor by  where  is a random transformation (aka augmentation)p(c | t(x)) t

t1

t2

t3

t4

classifier ∘ Φ representation space ℝdrandom tf.

24

Strong augmentations

Strong augmentations remove 
“uninteresting correlations” between 
samples (e.g., partial overlap, matching 
colour, continuity)


Induce clustering based on more abstract 
latent factors, such as class identity


t1

t2

same 
cluster



25

Cross-modal clustering: SeLaVi

Labelling unlabelled videos from scratch with multi-modal self-supervision. Asano, Patrick, Rupprecht, Vedaldi. NeurIPS, 2020

Φa Φa

ΦvΦv

representation space ℝd

26

Example: VGG-Sound

A large dataset of manually-annotated audio-visual sound classes

VGG-Sound: A large-scale audio-visual dataset. Chen, Xie, Vedaldi, Zisserman. ICASS, 2020.

27

Classes discovered in VGG-Sound

Video classes discovered using audio-visual 
clustering vs clustering using only the visual 
modality


Multi-modal clustering more than doubles the 
correspondence between human labels and 
automated clusters

N
M

I (
%

)

0

15

30

45

60

VGG-Sound NMI

52.6

20.1

Visual only + cross-modal

28

Demo

https://www.robots.ox.ac.uk/~vgg/research/selavi/#demo
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Scaling to large data and models

By avoiding the annotation cost, 
unsupervised learning allow to scale 
to much larder training datasets


High-capacity models can take 
advantage of larger datasets


For instance, Vision Transformers 
(ViT)

An image is worth 16×16 words: Transformers for image recognition at scale. Dosovitskiy et al. Proc. ICLR, 2021. 30

Generating training targets on the fly

SeLa alternates learning the representation and 
recomputing the labels (clusters)


A mean-teacher allows to update the (self) 
labels or other training targets online

Repres. Φ Labels

clustering

learn class.

Unsupervised learning of visual features by contrasting 
cluster assignments. Caron, Misra, Mairal, Goyal, 
Bojanowski, Joulin. Proc. NeurIPS, 2020.


Bootstrap your own latent: A new approach to self-
supervised learning. Grill et al., Proc. NeurIPS, 2020.


Momentum contrast for unsupervised visual 
representation learning. He, Fan, Wu, Xie, Girshick. Proc. 
CVPR, 2020

Φteach

moving 
average

Φstudent

Targets 
(e.g. labels)

predict

learn class.

stop grad.
x

31

DINO: Self-distillation with no labels

Φteach

random tf.
moving 
average

centring + 
sharpening

q(c |x)

p(c |x)

softmax 
classifier

Φstudent
p(c |x)

softmax 
classifier

cross 
entropy 

loss

X
stop grad.

Emerging properties in self-supervised vision transformers. Caron, Touvron, Misra, Jégou, Mairal, Bojanowski, Joulin. Proc. ICCV, 2021.

⏟

clustering-like

⏟

entropy max. substitute
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Noise contrastive learning

[InfoMax] Self-organization in a perceptual network. Linsker. Computer, 21(3), 1988.


[InstanceDiscr] Unsupervised feature learning via non-parametric instance discrimination. Wu, Xiong, Yu, Lin. Proc. CVPR, 2018


[DeepInfoMax] Learning deep representations by mutual information estimation and maximization. Hjelm, Fedorov, Lavoie-
Marchildon, Grewal, Bachman, Trischler, Bengio. Proc. ICLR, 2019


[CPC] Representation learning with contrastive predictive coding. Oord, Li, Vinyals. Proc. NeurIPS, 2019.


[CMC] Contrastive multiview coding. Tian, Krishnan, Isola. Proc. ECCV, 2020.


[SimCLR] A simple framework for contrastive learning of visual representations. Chen, Kornblith, Norouzi, Hinton. Proc. ICML, 2020


[MoCo] Momentum contrast for unsupervised visual representation learning. He, Fan, Wu, Xie, Girshick. Proc. CVPR, 2020


[SwAV] Unsupervised learning of visual features by contrasting cluster assignments. Caron, Misra, Mairal, Goyal, Bojanowski, Joulin. 
Proc. NeurIPS, 2020.


[BYOL] Bootstrap your own latent: A new approach to self-supervised learning. Grill, Strub, Altché, Tallec, Richemond, Buchatskaya, 
Doersch, Pires, Guo, Azar, Piot, Kavukcuoglu, Munos, Valko. Proc. NeurIPS, 2020.


[Review] On mutual information maximization for representation learning. Tschannen, Djolonga, Rubenstein, Gelly, Lucic. Proc. ICLR, 
2020
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The InfoNCE estimator

Φ Φ(x)

representation z

The estimator works by drawing and 
contrasting  pairs  from the joint 
distribution  

Contrasting means learning a critic  
that tells if  and  “go together” or not, similar 
to 

K (xi, zi)
p(x, z)

f : (x, z) ↦ ℝ
x z

p(x, z)

Information bound


I(x, z) ≥ max
f

𝔼
batch

1
K

K

∑
i=1

log
exp f(xi, zi)

∑K
j=1 exp f(xi, zj)

34

Multi-view InfoNCE

It is rare to see InfoNCE used to implement 
standard InfoMax


Instead, one almost always look at multi-view 
learning

Φ zx

max I(x, z)

Φ z1

x max I(z1, z2)

Φ z2

t1

t2

35

Limitations of the information perspective

A representation’s primary goal must be to simplify data analysis tasks


Information poorly quantifies this aspect

Φ Φ(x)

data x representation z

I(x, z) ≤ I(x, x)

Recall that information is 
maximised by doing 

nothing!

36

Vector representations

w

bicycle?  
 

⟨w, Φ(x)⟩

data x representation z interpretation y

Φ

Now a simple 
decision rule!
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Vector representations

A vector representation 
maps semantic similarity 
to vector similarity


Semantic similarity
Vector similarity 

(distance)

representation

38

Invariant and distinctive representations

Representation vectors 
should be:


• invariant to nuisance 
factors


• distinctive  for 
semantic factors


representation space ℝd

near
far

congruous 
pair

incongruous 
pair

x1

x2

x3

Φ(x1)

Φ(x2)

Φ(x3)

39

Contrastive learning: invariance and distinctiveness

representation space ℝd

near
far

x′￼1

x′￼′￼1

x′￼2

Φ(x′￼1)

Φ(x′￼′￼1)

Φ(x′￼2)

x1

x2

x′￼′￼2

T′￼1

T′￼′￼1

T′￼2

T′￼′￼2

Φ(x′￼′￼2)

40

Simple decision rules in clustering and InfoNCE

Self-labelling


The clustering layer is a linear classifier





where the representation is 


Contrastive learning


The critic function is the dot product





where the representation 

p(c |x) =
exp w⊤

c z
∑k≠c exp w⊤

k z

z = Φ(t(x))

𝔼
batch

1
K

K

∑
i=1

log
ez⊤

i z′￼i

∑j≠i ez⊤
i zj

zi = Φ(ti(xi))

The learned representations must support “simple” (linear) processing

Note — for normalised features:  ∥f(u) − f(v)∥2 = 2 − 2f(u)⊤ f(v)
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Should representations be invariant or distinctive?

Standard augmentations

• crop

• flip

• rotate

• …


Time

• shift

• reversal 

Modality slicing


42

Generalized Data Transformations (GDT)

On compositions of transformations in contrastive self-supervised learning. Patrick, Asano, Kuznetsova, Fong, Henriques, Zweig, 
Vedaldi. ICCV, 2021.

Dataset D

x1

t11(x1) t21(x1)

x2

t12(x2) t22(x2)

x3

t13(x3) t23(x3)

xn

t1n(xn) t2n(xn)

…

sample an image

standard augment

T1(D) T2(D) T3(D) T4(D) T6(D)T5(D) TK−1(D) TK(D)composition

distinctive

Transformation Representation

invariant

43

Contrast matrix

The contrast matrix 
tells which 
transformation pairs 
should be invariant 
(+1), distinctive (-1) or 
ignored (0)

On compositions of 
transformations in 
contrastive self-supervised 
learning. Patrick, Asano, 
Kuznetsova, Fong, Henriques, 
Zweig, Vedaldi. ICCV, 2021.

Dataset D

x1

t11(x1) t21(x1)

x2

t12(x2) t22(x2)

x3

t13(x3) t23(x3)

xn

t1n(xn) t2n(xn)
…

0 1 -1 -1 -1 -1 -1 -1

1 0 -1 -1 -1 -1 -1 -1

-1 -1 0 1 -1 -1 -1 -1

-1 -1 1 0 -1 -1 -1 -1

-1 -1 -1 -1 0 1 -1 -1

-1 -1 -1 -1 1 0 -1 -1

-1 -1 -1 -1 -1 -1 0 1

-1 -1 -1 -1 -1 -1 1 0

T1(D) T2(D) T3(D) T4(D) T6(D)T5(D) TK−1(D) TK(D)

T1(D)
T2(D)
T3(D)
T4(D)

T6(D)
T5(D)

TK−1(D)
TK(D)

…
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Contrastive loss using generalised transformations

Contrast positive pairs of GDTs against all the other pairs, 
except the ignored ones


  


Overall contrast value can be deduced from the desired effects 
on individual transformations


∑
C(T,T′￼)=1

log
ef(T(D),T′￼(D))

∑C(T,T′￼′￼)≠0 ef(T(D),T′￼′￼(D)
C =

Contrast matrix
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Multimodal GDTs

GDTs can be used to combine 
several multi-modal 
transformations in a single 
learning formulation

Video collection

x1

ta
1(aτ1

1 ) tv
2(vτ2

1 )

x2 …

xτ1
1

aτ1
1 vτ2

1

xτ2
1

Data sampling

Time shift or reversal

Modality slicing

Augmentation

tv
1(vτ1

1 )

vτ1
1 aτ2

1

ta
2(aτ2

1 ) ta
3(aτ3

2 ) tv
4(vτ4

2 )

xτ3
2

aτ3
2

vτ4
2

xτ4
2

tv
3(vτ3

2 )

vτ3
2 aτ4

2

ta
4(aτ4

2 )
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GDT example results

Timeshift (TS)

H
M

D
B

-5
1

55

56.25

57.5

58.75

60

Base

Invaria
nce (I)

Distti
nctiv

eness (D
)

58.2

56.1

56.9

Time reversal (TR)

H
M

D
B

-5
1

55

56.25

57.5

58.75

60

Base

Invaria
nce

Distin
ctiv

eness

58

57.2
56.9

Combinations

H
M

D
B

-5
1

55

56.25

57.5

58.75

60

Base
TR-D

TS-D

(T
S+TR)-D

60

58.2
58

56.9

On compositions of transformations in contrastive self-supervised learning. Patrick, Asano, Kuznetsova, Fong, Henriques, Zweig, 
Vedaldi. ICCV, 2021.
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Measuring representation interpretability

Is there a simple relation between a representation and concepts?

?
48

Direct vs reverse probing

Direct (standard) probing


Pick a dataset labelled for certain concepts (e.g. 
1000 classes in ImageNet)


Try to linearly map representation vectors to 
concepts 

Inverse probing


Cluster the representation vectors (via K-
means)


Try to linearly map combinations of concepts to 
clusters

Φ probe

cardinal

error Φ clustering

cardinal

yellow

striped

I(c, y) probe
c

y

̂y

y

Network dissection: Quantifying interpretability of deep visual representations. Bau, Zhou, Khosla, Oliva, Torralba. Proc. CVPR, 2017


Measuring the interpretability of unsupervised representations via quantized reversed probing. Laina, Asano, Vedaldi. Proc. ICLR, 2021.
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MoCo V2 clusters explained

Measuring the interpretability of unsupervised representations via quantized reversed probing. Laina, Asano, Vedaldi. Proc. ICLR, 2021.

Additional explanatory factorsImageNet Bikes

50

SimCLR clusters explained

Measuring the interpretability of unsupervised representations via quantized reversed probing. Laina, Asano, Vedaldi. Proc. ICLR, 2021.

Additional explanatory factorsImageNet “Hockey”
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Interpretability of representations quantified

Explainability of unsupervised 
representations by concept 
families


Clustering-based methods are 
generally more interpretable

MoCo
-v1

MoCo
-v2 SwAV SeLa-

v2

Deep
Clust

er-v2 MoCo
-v3

Supe
rvised

0

10

20

30

40

50

60

70

80

To
p-
1A
cc
ur
ac
y
(%
)

ImageNet
+Objects
+Scenes
+Material
+Texture
+Other

ImageNet
+Objects
+Scenes
+Material
+Texture
+Other

Measuring the interpretability of unsupervised 
representations via quantized reversed probing. 
Laina, Asano, Vedaldi. Proc. ICLR, 2021. 52

Emergent properties of self-supervised ViTs

Emerging properties in self-supervised vision transformers. Caron, Touvron, Misra, Jégou, Mairal, Bojanowski, Joulin. Proc. ICCV, 2021.
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Forming spatial clusters of dense features

Self 
supervised 

(e.g. ViT)

dense features

f(u)

Inner 
product

W(u, v) = ReLU( f(u)⊤ f(v))

affinity between 
pixels  and u v

u

v
W

Let  be the indicator function of a segment


The segment’s smoothens according to the affinity  is





Rewritten in matrix form:


    where       (Laplacian matrix)


f(u) ∈ [0,1]

W

E( f ) = ∑
uv

W(u, v) ⋅ ( f(u) − f(v))2

E( f ) = f⊤Lf L = D − W
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Extracting segments from affinities

u

v
W

f(u) = 1

f(u) = 0

The eigenvectors  of  form an orthonormal basis for 


This means that:





for  some coefficients 


hk L f

f(u) = a0h0(u) + a1h1(u) + … + an−1hn−1(u)

ak

55

Extracting segments from affinities

u

v
W

f(u) = 1

f(u) = 0

By expanding  using the eigenvectors:





The segment’s smoothness is given by the eigenvalues:


f

f(u) = a0h0(u) + a1h1(u) + … + an−1hn−1(u)

E( f ) = λ0a2
0 + λ1a2

1 + … + λn−1a2
n−1

56

Extracting segments from affinities

smoother

u

v
W

f(u) = 1

f(u) = 0
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Eigenvectors of self-supervised affinities

Eigenvectors for DINO ViT


Deep spectral methods: A surprisingly strong baseline for 
unsupervised semantic segmentation and localization. 
Melas-Kyriazi, Rupprecht, Laina, Vedaldi. CVPR, 2022.
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Unsupervised object localisation

CorLoc

Deep spectral methods: A surprisingly strong baseline for 
unsupervised semantic segmentation and localization. 
Melas-Kyriazi, Rupprecht, Laina, Vedaldi. CVPR, 2022.
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Unsupervised semantic segmentation

Deep spectral methods: A surprisingly strong baseline for 
unsupervised semantic segmentation and localization. 
Melas-Kyriazi, Rupprecht, Laina, Vedaldi. CVPR, 2022.

60

More…

Deep ViT features as dense visual 
descriptors. Amir, Gandelsman, 
Bagon, Dekel. CoRR, abs/2112.05814, 
2021.

Unsupervised part discovery from 
contrastive reconstruction. Choudhury, 
Laina, Rupprecht, Vedaldi. NeurIPS, 2021.
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Conclusions for part I

Principles of self-supervised representations

• Informative representations (no collapse)

• Information vs metric view

• Transformation/modality invariance


Tricks of the trade

• Strong augmentations

• Distillation and mean-teacher

• High-capacity models (ViTs)


Measuring interpretability

• Direct and inverse probing

• Clustering parts


Applications

• data clusterings

• object/part segmentation

• many more…


Not covered but important: 
generative modelling


• Masked autoencoders (e.g., SiT, MAE)

• Inspired by ultra-large language models


SiT: Self-supervised vision transformer. Ahmed, Awais, Kittler. 
arXiv.cs, abs/2104.03602, 2021.


Masked autoencoders are scalable vision learners. He, Chen, Xie, 
Li, Dollár, Girshick. Proc. CVPR, volume abs/2111.06377, 2021.

AIMS Big Data Course 
Introduction to deep learning
Part 2: Interpretation


Artificial Intelligence 63

Kind of explanations

Analysis

Given an off-the-shelf 
networks, explain what it 
knowns, how it works, and 
how it learns 

Win an argument

The network explains its 
decision to a user, with the 
goal of convincing her 

Communicating a skill

Explain to a human or 
machine how to solve a 
certain class of problems, in 
general

Artificial Intelligence 64

Analysing deep neural networks

• Template matching?

• Compositionality?

• Spatial reasoning?

• Generalization?

• Optimisation?

• What concepts can it recognise?

• Spurious correlations?

• Limitations?

How does it do it? How does it learn it?What does a net do?

c1 c2 c3 c4 c5 f6 f7 f8 Gold 
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Deep networks 
as encoders

c1 c2 c3 c4 c5 f6 f7 f8 Gold 

x y
Φ

Φ

Artificial Intelligence 66

Deep networks 
as encoders

Images Codes

𝒳 = ℝm 𝒴 = ℝn

x y
Φ

67

Generating iconic 
examples

Attribution

68

Generating iconic 
examples

Attribution
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How much information about  does  contain?x y

Multiple images map 
to the same code

Images Codes

𝒳 = ℝm 𝒴 = ℝn

y

Φ

x3

x2

x1

Artificial Intelligence 70

Pre-image

Reconstructions form 
an equivalence class 
of images, called a 
pre-image


All pre-images hat are 
indistinguishable for 
the network

Images Codes

𝒳 = ℝm 𝒴 = ℝn

y

x3

x2

x1 Φ

Artificial Intelligence 71

Finding pre-images via optimisation
Images Codes

𝒳 = ℝm 𝒴 = ℝn

yx0

x

min
x

∥Φ(x) − Φ(x0)∥2

Φ

Artificial Intelligence 72

Natural pre-images
We are interested in pre-images that can realistically be network inputs

Codes

𝒴 = ℝn

y

Φ

Unconstrained pre-
image

Peseudo-natural 
images

Natural 
images
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Pseudo-natural pre-images

Regularised energy
 Constrained optimisation

 

Posterior probability

min

x
∥Φ(x) − Φ(x0)∥2 + ℛ(x) min

x∈𝒳pn

∥Φ(x) − Φ(x0)∥2 p(x |y) ∼ δ(Φ(x) − y) ⋅ p(x)

For example TV-norm


Understanding deep image 
representations by inverting them  
Mahendran Vedaldi, CVPR, 2015  

For example Deep Image Prior


Deep image prior 
Ulyanov Vedaldi Lempistky, CVPR, 2018


For example Plug & Play gen. 
nets


Plug & play generative networks: 
Conditional iterative generation of 
images in latent space  
Nguyen, Yosinksi, Bengio, Dosovitskiy, 
Clune, CVPR, 2017

Artificial Intelligence 74

Generator nets as image parameterisations

Consider a generator network 
with a fixed input  

 
The network parameters  can 
be thought as image 
parameters


 


Ψ z0

w

w ⟼ x = Ψ(z0; w)

fixed  
random 
vector

x

c1 c2 d3 d4z0

w1 w2 w3 w4
image 

parameters

Ψ
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Fit a network to a single example

Start randomly-initialised network


Given an image , its parameter  
is recovered by solving the 
optimisation problem


This is similar to learning the 
network from a single image


x w

min
w

∥x − Ψ(z0; w)∥2 fixed  
random 
vector

x

c1 c2 d3 d4z0

w1 w2 w3 w4
image 

parameters

Ψ
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Deep image prior

For most  generator networks 
fitting naturally-looking images is 
easier/faster than fitting others


Deep image prior 
Ulyanov Vedaldi Lempistky, CVPR, 2018
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Deep image 

For inpainting we only 
reconstruct the visible pixels, 
implicitly infer the others


min
w

∥m ⊙ (x − Φ(w))∥2

Conv. coding   Deep Image Prior
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The inverter is only given the code; 
it is not learned from data in any way


Inverting codes 
via the deep 

80

c1 c2 c3 c4 c5 f6 f7 f8 Patas

c1 c2 d3 d4z

x
w1 w2 w3 w4

x0

c1 c2 c3 c4 c5 L2 E(w1, w2, w3, w4)

Deep image prior Ψ

 code to inverty0

y

Inversion result

Inverter

Minimised

model Φ

min
w

∥Φ(Ψ(w)) − Φ(x0)∥2
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Inverting AlexNet

[Krizhevsky et al. 2012]

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

Conv 1
ReLU 1

LRN 1
Max pool 1

Conv 2
ReLU 2

LRN 2
Max pool 2

Conv 3
ReLU 3

Conv 4
ReLU 4

Conv 5
ReLU 5
Max pool 5

FC 6
ReLU 6

FC 7
ReLU 7

FC 8
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet

95 Artificial Intelligence

Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet
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Inverting AlexNet

fc 8ReLU 6

Original

Image

Conv 1 Conv 2

Conv 3

Conv 4 Conv 5

FC 6 FC 7 FC 8
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Is the code semantic or visual?

conv5 fc8fc6input

fc8 is a 1000-dimensional class score 
vector…  Artificial Intelligence 104

Activation maximization

min
w

− ⟨ek, Φ(Ψ(w))⟩

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 ⇥ 5 ⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3 ⇥ 3 ⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224 ⇥ 224 ⇥ 3-dimensional.
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Deep Quiz

https://goo.gl/jURsCP
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Effect of 
the prior
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The inverter is only given the code; 
it is not learned from data in any way


Inverting codes 
via the deep 
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c1 c2 c3 c4 c5 f6 f7 f8 Patas

c1 c2 d3 d4z

x
w1 w2 w3 w4

x0

c1 c2 c3 c4 c5 L2 E(w1, w2, w3, w4)

Deep image prior Ψ

 code to inverty0

y

Inversion result

Inverter

Minimised

model Φ

min
w

∥Φ(Ψ(w)) − Φ(x0)∥2

Artificial Intelligence

The inverter  is now 
learned using a training set


   +   

Ψ

min
Ψ

1
N

N

∑
i=1

∥Ψ(Φ(xi)) − xi∥2

Learning the 
inverter from 
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c1 c2 c3 c4 c5 f6 f7 f8 Patas

x0

 code to inverty0

Inverter

model Φ

Deep generator network Ψ

L2E d4 d3 d2 d1 y0

Artificial Intelligence 116

Learning the inverter

Popular methods combine:

• perceptual loss	
• feature rec. loss	
• adversarial loss (GAN) 	

•

x0 ≈ x
Φ(x0) ≈ Φ(x)
p(x0) ≈ p(x)

c1 c2 c3 c4 c5

d4 d3 d2 d1

x0

x

Inverting convolutional networks with convolutional 
networks  
Dosovitskiy Brox, CVPR, 2016

Synthesizing the preferred inputs for neurons in neural 
networks via deep generator networks  
Nguyen, Dosovitskiy, Yosinski, Brox, Clune, NIPS, 2016


Generating images with perceptual similarity metrics 
based on deep networks  
Dosovitskiy Brox, NIPS, 2016

Plug & play generative networks: Conditional iterative 
generation of images in latent space  
Nguyen, Yosinksi, Bengio, Dosovitskiy, Clune, CVPR, 2017
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Diagnostic vs 

Our goal: diagnose a 
given network 

But inversions also 
reflect the chosen 
“natural image” prior 

Φ

p(x)

Deep Image Prior Plug & Play Gen. 
Net.

Empirical prior

only prior is the  
structure of the gener.

prior comes from training 
a GAN on ImageNet

ImageNet empirical 
distributionp(x) =

Illustrates the model 
Φ

Illustrates the prior 
p(x)
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Reviews and interfaces

The building blocks of 
interpretability  
Olah, Satyanarayan, Johnson, Carter, 
Schubert, Ye, Mordvintsev 
Distill, 2018. https://distill.pub/2018/
building-blocks

Understanding neural networks 
through deep visualisation  
Yosinksi et al. ICMLW, 2015


Definitely check out Distill!
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Generating iconic 
examples

Attribution

Artificial Intelligence 120

Attribution

Where is the model looking?

c1 c2 c3 c4 c5 f6 f7 f8 dog

?
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Backprop methods: grad

The “salient” pixels usually light up

Image

Gradient

Deep inside convolutional networks,  Simonyan, Vedaldi, Zisserman, ICLR, 2014

“Black 
widow” class 

neuron

forward Φ

backward J =
dΦ(x)

dx

c1 c2 c3 c4 c5 f6 f7 f8

c1BP c2BP c3BP c4BP c5BP f6BP f7BP f8BP
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Early backprop methods

Deconvolution 
 
Visualizing and understanding 
convolutional networks  
Zeiler Fergus, ECCV, 2014

Gradient (backpropagation) 
 
Deep inside convolutional networks: 
Visualising image classification 
models and saliency maps  
Simonyan, Vedaldi, Zisserman, ICLR, 
2014

Guided backpropagation 
 
Striving for simplicity: The all 
convolutional net  
Springenberg, Dosovitskiy, Brox, 
Riedmiller, ICLR, 2015
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Backprop: deconv, grad, guided grad

Salient deconvolutional networks, Mahendran Vedaldi, ECCV, 2016

ReLUConv ReLUConv⋯ ⋯

ReLU DeConvNetConvBP ReLUConvBP⋯ ⋯

ReLUBPReLU Guided backpropConvBP ConvBP⋯ ⋯ReLUBPReLU

ReLUBPConvBP ReLUBPConvBP⋯ ⋯Gradient
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Comparisons

DeConvNet

Guided backprop

Gradient

Salient deconvolutional networks. Mahendran Vedaldi, ECCV, 2016
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Comparisons
Deconvolution


• Sharp

• Poor spatial selectivity


Gradient

• Blurry

• OK spatial selectivity


Guided Backprop

• Sharp

• OK spatial sensitivity

Deconvolution Gradient Guided Backprop

Warning: they all still have poor channel selectivity
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Smoother grads

Gradient	

Gradient  input	

Integrated Gradients 	  	

SmoothGrads 	

dΦ(x)
dx

× x ⊙
dΦ(x)

dx

(x − x̄) ⊗ ∫
1

0

dΦ(x̄ − α(x − x̄))
dx

dα Axiomatic attribution for deep networks. 
Sundararajan, Taly, Yan. Proc. ICML, 2017.

E [ dΦ(x + ϵ)
dx ], ϵ ∼ 𝒩 Smoothgrad: removing noise by adding 

noise. Smilkov, Thorat, Víegas, Wattenbeg. 
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Comparisons
Gradient Integrated Gradients Guided Backprop
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Lack of 
channel 

Visualising any 
output results 
in about the 
same result

c1 c2 c3 c4 c5 f6 f7 f8

c1BP c2BP c3BP c4BP c5BP f6BP f7BP f8BP
maximally 

activated neuron

Attribution for:

c1BP c2BP c3BP c4BP c5BP f6BP f7BP f8BP random neuron

c1BP c2BP c3BP c4BP c5BP f6BP f7BP f8BP
minimally 

activated neuron
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Backprop: 
CAM and 

Learning deep features 
for discriminative 
localization 
Zhou, Khosla, Lapedriza, 
Oliva, Torralba, CVPR, 
2016


Grad-CAM: Visual 
explanations from deep 
networks via gradient-
based localization 
Selvaraju, Cogswell, 
Das, Vedantam, Parikh, 
Batra, ICCV, 2017

c1 c2 c3 c4 c5 f6 f7 f8

c1BP c2BP c3BP c4BP c5BP f6BP f7BP f8BP cat class neuron

Attribution for:

c1BP c2BP c3BP c4BP c5BP f6BP f7BP f8BP dog class neuron

Artificial Intelligence

ReLU
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Relevance and excitation backprop

On pixel-wise explanations for non-linear classifier decisions 
by layer-wise relevance propagation 
Bach, Binder, Montavon, Klauschen, Müller. PLOS one, 2015


Top-down neural attention by excitation backprop 
Zhang, Lin, Brandt, Shen, Sclaroff, ECCV, 2016

x12
⋮

xCn

x1,n−1

⋮
xD,n−1

z1n
⋮

zCn

w11 … w1D
⋮ ⋱ ⋮

wC1 … wCD

×

r12
⋮

rC2

r1,n−1

⋮
rD,n−1

Modified backprop rules 
(often a “conservation principle” 

)∑ = 1
 relevance⋯relevance ⋯

activation ⋯  activation⋯

Artificial Intelligence

ReLU
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Relevance and excitation backprop

Actual rules are more sophisticated, please see references!

x12
⋮

xCn

x1,n−1

⋮
xD,n−1

z1n
⋮

zCn

w11 … w1D
⋮ ⋱ ⋮

wC1 … wCD

×

r12
⋮

rC2

r1,n−1

⋮
rD,n−1

r⊤
n−1 = r⊤

n ⋅ [diag(xn + ϵ)−1 ⋅
dxn

dx⊤
n−1

⋅ diag(xn−1)]  relevance⋯relevance ⋯

activation ⋯  activation⋯

r⊤
n−1 = r⊤

n ⋅ [diag(xn + ϵ)−1 ⋅ [xn > 0] ⋅
dzn

dx⊤
n−1

⋅ diag(xn−1)]
r⊤

n−1 diag(xn−1)−1 = r⊤
n diag(xn + ϵ)−1 ⋅ [diag(xn > 0) ⋅

dzn

dx⊤
n−1 ]

r⊤
m =

dxn

dx⊤
m

⋅ diag(xm)
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The meaning of attribution maps

For most 
methods, 
attribution is 
defined 
algorithmically


Hence, the 
meaning of 
the output is 
not so clear

Forward  
evaluation

x12
⋮

xCn

x1,n−1

⋮
xD,n−1

⋯

ActivationActivation

r12
⋮

rC2

r1,n−1

⋮
rD,n−1

Attribution  
backprop  
formulas

…

AttributionAttribution

⋯

⋯
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Grad method = sensitivity analysis

The gradient can be directly 
interpreted as a local linear 
approximation of the model


Φ(x) ≈ ⟨ dΦ
dx

, x − x0⟩ + Φ(x0)

Images Codes

𝒳 = ℝm 𝒴 = ℝn

y

Φ

x
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Perturbation analysis
Study how  changes up to perturbations  of the input 

Perturbations should be meaningful (interpretable). E.g:

• Injecting noise

• Rotating or translating the image

• Erasing parts of the image


The representation may

• Be invariant (stay the same)

• Be equivariant (respond predictably)


The analysis may be

• Local around  and 
• For a distribution  and a fixed 
• For a distribution  and a fixed 
…

Φ(x) π(x) x

x π
p(x) p(π)
p(π) x

Φ

π(x)

x

Φ y′￼

y
input code

perturbation π " "Φ(π)

Artificial Intelligence

Change the input and observe the effect on the output
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Perturbation analysis

Clear meaning, but can only test a small number of occlusion patterns

Input Occlusion RISE

[Zeiler and Fergus, ECCV 2014; Petsiuk et al., BMVC 2018]
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Extremal Perturbations
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Blur everywhere  response suppressed⇒

Artificial Intelligence 138

Preserve 10%  response preserved⇒

Artificial Intelligence

Meaningful perturbations

139

We seek the 
“smallest 
elision” that 
maximally 
changes the 
neuron 
activation

(more meaningful)(ineffective)

“cat” probability 
1.00

“cat” probability 
0.01

“cat” probability 
0.5

Original Redact-out Blur-out
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Adversarial perturbations

Neural networks are 
fragile to adversarial 
perturbations


Adversarial 
perturbations attract 
gradient descent


Intriguing properties of 
neural networks. 
Szegedy, Zaremba, 
Sutskever, Bruna, Erhan, 
Goodfellow, Fergus. CoRR 
2013

Original Redacted Mask
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Extremal perturbations

A mask is optimized to maximally excite the network:

argmax
m

Φ(m ⊗ x)

m

m ⊗ x

Φperturb Φ(m ⊗ x)

x

subject to area(m) = a

Artificial Intelligence

Optimizing w.r.t. to an area constraint is 
challenging


Here we re-formulate it as matching a rank 
statistics

142

Area constraint

subject to area(m) = a

vectorize sort

Larea = ∥ vecsort(m) − ra∥2

m
rα

vecsort(m)
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Smooth masks

conv(u; m; k) =
1
Z ∑

v∈Ω

k(u − v)m(v)

maxconv(u; m; k) = max
v∈Ω

k(u − v)m(v)

smaxu∈Ω;T f(u) =
∑u f(u)exp( f(u)/T )

∑u exp( f(u)/T )

smoothconv(u; m; k; T ) = smaxv∈Ω;T k(u − v)m(v)

m(v) : mask
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Smooth masks
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Comparison with prior work on “meaningful perturbations"

Compared to Fong and 
Vedaldi, 2017, we remove 
all regularization terms in 
the energy term.


Our innovations result in a 
method that’s more 
principled, stable, and 
sensitive.

N
ew

O
ld
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Algorithm

1. Pick an area  


2. Use SGD to solve the optimization problem for a large : 
 

3. If needed, sweep  and repeat

a

λ

argmax
m

Φ(smooth(m) ⊗ x) − λ∥ vecsort(smooth(m)) − ra∥2

a
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Results
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Foreground evidence is usually sufficient
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Large objects are recognised by their details

Artificial Intelligence 150

Small objects contribute cumulatively
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Suppressing the background may overdrive the network
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Diagnosing networks

Example: the hot 
chocolate is 
recognized via the 
spoon and the 
truck vs the 
license plate
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Let  be the label 
predicted for image  by the 
deep net


Empirically, we can find tiny 
perturbations  that 
change  arbitrarily


y = Φ(x)
x

x + δ
y

δ* = argmin
∥δ∥<ϵ

∥yarbitrary − Φ(x + δ)∥

CNN fragility

153
Intriguing properties of neural networks  
 Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus. CoRR,  2013

Trombone Persian cat

＋

Φ Φ

δ*
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Dangerous adversaries

Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition. Sharif, Bhagavatula, Bauer, Reiter. Proc. 
CSS, 2016.


Robust physical-world attacks on machine learning models. Evtimov, Kevin Eykholt, Li, Prakash, Rahmati, Song. arXiv, 2017.

Adversarial glasses fooling  face 
recognition

Adversarial stickers fooling sign 
recognition
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Adversarial defence

Method: recognize 
genunie vs 
adversarial images 
by learning a 
classifier on top of 
the saliency maps


(Illustrative of 
attribution, not 
really a 
recommended 
defence strategy!)

Perturbatio
n analysis

Trombone saliency Persian cat saliency 

Trombone Persian cat

＋

Φ Φ

δ*
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Assessing attribution
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Assessing attribution: pointing game & weak localisation

Goal: measure the spatial correlation between 
attribution maps and object occurrences


If the correlation is strong:


• the diagnosed model “understand” the object and
• the attribution method can tell


However, if the correlation is poor, either:


• the diagnoses model does not understand the object 
or


• the attribution method fails to tell
Artificial Intelligence 158

Assessing attribution: neuron sensitivity

Attribution should 
generally result in a 
different output 
depending on which 
neon one wishes to 
visualise.

G
ol

de
n 

Ti
ge

r 

Gradient DeConvNet Guided BP Grad  Input× Excit. BP Contrastive 
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Assessing attribution: parameter sensitivity

Attribution should also 
produce a different 
output if the model 
weights are different 
— e.g. random

Sanity checks for saliency maps. 
Adebayo, Gilmer, Muelly, Goodfellow, 
Hardt, Kim. Proc. NeurIPS, 2018.
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Assessing attribution: shift invariance

Learning how to explain neural networks: 
PatternNet and PatternAttribution. Kindermans, 
Schütt, Alber, Müller, Erhan, Kim, Dähne. Proc. 
ICLR, 2018.  
Making convolutional networks shift-invariant 
again. Zhang. Proc. ICML, 2019.
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Assessing attribution: perturbation analysis

Display
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Equivariance

Short answer: warping 
image usually reduces 
to sparse linear tf in 
feature space. 
 
Long answer: 
Understanding image 
representations by 
measuring their equivariance 
and equivalence. Lenc 
Vedaldi. CVPR 2015 & IJCV 
2018

c1 c2 c3 c4 c5 c6

c1 c2 c3 c4 c5 c6

g

y1

y2

Mg

featuresimages

?
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Equivalence

Short answer: there 
generally are 
corresponding features 
in different networks 
(up to 1x1 linear tfs). 
 
Long answer 
Understanding image 
representations by 
measuring their 
equivariance and 
equivalence. Lenc Vedaldi. 
CVPR 2015 & IJCV 2018

c1 c2 c3 c4 c5 fc6

c1 c2 c3 c4

fox

fox

AlexNet

VGG-VD

c1 c2 c3 c3 c4 c5 c5c5c4

fc7 fc8

fc6 fc7 fc8

Are these the same features?
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Collected references
Explainable AI: Interpreting, 
Explaining and Visualizing Deep 
Learning. Samek, Montavon, 
Vedaldi, Hansen, Muller, editors. 
Springer, 2019
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Software

Captum

https://pytorch.org/captum/

More than just vision  

TorchRay

https://github.com/facebookresearch/TorchRay

Attribution, reproducibility, benchmarks

Summary

Universal Representation

Compact representation families 

Unsupervised Representation

Self-supervision for learning 
features

Self-supervision for learning 
structure

What’s in the prior


Understandable Representations

Iconic visualizations

Attribution

Semantic identification
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