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Module content & resources 2

Learning objectives 

• Elementary data structures: 
arrays, stacks, queues, linked 
lists 

• Binary Trees 

• Binary Search Trees 

• Heaps 

• Priority Queues 

• Hashing 

• Graphs 

• Shortest paths 

Materials 

Slides, Notes, and Examples 

• https://www.robots.ox.ac.uk/
~vedaldi/teach.html 

Source code for the Examples 

• https://github.com/vedaldi/
b16-code 

Feedback Form 

 

Reference text 

 

Introduction to Algorithms, 3rd 
Edition. Cormen, Leiserson, 
Rivest, Stein. McGraw-Hill, 
1990.
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Algorithms and Data Structures 1
Part 1 of  4: Recap on complexity, quasilinear and linear sort, 
elementary data structures (arrays, stacks, queues, linked lists) 

Dr Andrea Vedaldi 
4 lectures, Hilary Term 

For lecture notes, tutorial sheets, and updates see 
http://www.robots.ox.ac.uk/~vedaldi/teach.html

Problem 
A problem is a description of  the input 

data, the output data, and the relationship 
between them. 

Algorithm 
An algorithm is a description of  certain 

computational steps that generate the output 
data from the input data, thus solving the 

problem.
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Sorting problem [revision] 5

Problem definition 

• Input: A sequence  

• Output: The same sequence, but permuted so 
that 
 

 

Problem instance 

• Input:	  

• Output:	

A = (A0, A1, …, An−1)

Ai−1 ≤ Ai for i = 1,…, n − 1

A = (5,4,3,2,1)

A = (1,2,3,4,5)

Merge Sort [revision] 6

: 

• Precondition:  is an array

• Postcondition:  has the same element as before, but 
permuted in non-decreasing order

1. If , return
2. Let 
3. Let 

4. Let 

5. Call 
6. Call 
7. Set  

:

• Precondition: arrays  and  are sorted

• Postcondition: return an array  which is the non-decreasing 
union of arrays  and 

1. Let  and 
2. Reserve space for a sequence  of  elements
3. While  and :

3.1. If :

3.1.1. Set  and 

3.2. Else:
3.2.1. Set  and 

4. While :
4.1. Set  and 

5. While :
5.1. Set  and 

6. Return 

MergeSort(A)
A
A

|A | = 1
i ← ⌊ |A | /2⌋
B ← (A0, …, Ai−1)
C ← (Ai, …, A|A|−1)
MergeSort(B)
MergeSort(C)
A ← Merge(B, C)

Merge(B, C)
B C

A
B C

i ← 0 j ← 0
A |B | + |C |

i < |B | j < |C |
Bi ≤ Cj

Ai+j ← Bi i ← i + 1

Ai+j ← Cj j ← j + 1

i < |B |
Ai+j ← Bi i ← i + 1

j < |C |
Ai+j ← Cj j ← j + 1

A

Merge Sort: example [revision] 7

2 7 6 3 5 8 4 1

2 7 6 3 5 8 4 1

2 7 6 3 5 8 4 1

2 7 6 3 5 8 4 1

divide merge

2 7 6 3 5 8 4 1

81 2 3 4 5 6 7

2 3 6 7 1 4 5 8

2 7 3 6 5 8 1 4

Complexity [revision] 8

The goal of  complexity is to analyse the speed of  
an algorithm 

Let  be a parameter characterising the size of  
the input 

We study the number of  computational steps 
 that an algorithm requires to solve the problem 

Worst-case complexity 

 is the largest possible number of  steps to solve 
any problem instance of  size  

Average-case complexity 

 is the average possible number of  steps to solve 
“random” problem instances of  size   

This requires defining a probability distribution 
over problem instances

n

f(n)

f(n)
n

f(n)
n



Complexity [revision] 9

Big-O notation 

We say that  is Big-O of   iff  there are 
constant  such that 

 

Big-  notation 

We say that  is Big-  of   iff  there are 
constant  such that 

 

Big-  notation 

We say that  if Big-  of   iff  it is 
simultaneously Big-O and Big-  of  

f(n) g(n)
n0, a

∀n ≥ n0 : f(n) ≤ ag(n)

Ω

f(n) Ω g(n)
n0, a

∀n ≥ n0 : f(n) ≥ ag(n)

Θ

f(n) Θ g(n)
Ω g(n)

f(n) = n2 + cos(4πn) + 1

g(n) ≤ f(n) ≤
3
2

g(n)

g(n) = n2

Merge Sort: work done [revision] 10

1 sequence of size 8

2 sequences of size 4

4 sequences of size 2

8 sequences of size 1

1 × 8

2 × 4

4 × 2

divide & merge

8 x 1

total work

8

8

8

8

log2 n

n

O(n log n)

Merge Sort: complexity [revision] 11

Recurrence relation 

Merge Sort called on a sequence of  length : 

• Calls itself  recursively on sequences of  size  

• Merges the resulting sorted subsequences in  
steps 

The total number of  steps is thus given by the 
following recurrence relation: 

•  

•  

Solution of  the recurrence relation 

The solution of  of  the recurrence equations is 

	  

(homework: verify this expression) 

Conclusion: Merge Sort is 

n = |A |

n/2

n

f(n) = 2f(n/2) + n

f(1) = 1

f(n) = n(log2 n + 1)

O(n log n)

How fast can you sort? 12

Sorting using comparisons 

Algorithm  only observes the input sequence  
by the results of  pairwise comparisons  

It then outputs a permutation of  the sequence  
which sorts it 

A counting argument 

There are  possible permutations  of  the 
sequence  

As  varies, the algorithm  must eventually 
output  different permutations 

If   performs only  comparisons, it can only 
output  possible permutations 

Hence, we must have 

𝒮(A) A
Ai < Aj

A

n! A
(1, 2, …, n)

A 𝒮(A)
n!

𝒮(A) t
2t

2t ≥ n!



How fast can you sort? 13

A counting argument (/ctd) 

We thus have the following bound: 

 

Hence: 

	  

Lower bound on complexity 

No sorting algorithm based on pairwise 
comparisons can be faster than 

2f(n) ≥ n! = n(n − 1)⋯(n/2)

n/2 terms

(n/2 − 1)⋯2 ⋅ 1 ≥ ( n
2 )

n
2

f(n) ≥
n
2

log2
n
2

⇒ f(n) ∈ Ω(n log n)

Ω(n log n)

Sorting faster than n log n 14

Sorting faster is possible under additional assumptions. For example: 

Assumption: the input sequence  consists of  natural numbers  in the range 0 to  

: 

1. Allocate an array  with  elements initialised to 0
2. For :

2.1. Set 

3. Let  and  
4. While :

4.1. If , then set  and continue with line 4

4.2. Set 

4.3. Set 

4.4. Set 

A Ai k − 1

CountingSort(A, k)

C k
i = 0,…, |A | − 1

CAi
← CAi

+ 1

i ← 0 j ← 0
j < k
Cj = 0 j ← j + 1

Ai ← j
Cj ← Cj − 1

i ← i + 1

⏟  stepsn

 stepsk

Complexity: Θ(n + k)
 at most  timesk

 at most  timesn

Data structures 15

A data structure is a container that arranges data 
in such a way that certain operations can be 
implemented efficiently 

Today we will look at: 

• Arrays 

• Stacks 

• Queues 

• Linked lists 

In the rest off  the course we will look at: 

• Binary trees 

• Heaps 

• Priority queues 

• Hashes 

• Graphs

Arrays 16

An array  is a map from indices  to 
elements  that allows fast access to any of  
the elements 

This means that reading or writing any element  
is a  operation 

Typical implementation of  an array 

An array is implemented by storing elements at 
equally-spaced memory locations 

Then the address of  element  is computed in  
time as  for any value of  the index  

In a RAM machine, accessing an element by its 
address is a  operation

A 0,…, n − 1
A0, …, An−1

Ai
Θ(1) Ai Θ(1)

𝚋𝚊𝚜𝚎 + i 𝚜𝚝𝚛𝚒𝚍𝚎 i

Θ(1)

A0 A1 A2 A3 A4

stridebase

Memory



Array insert 17

While random access with an array is fast, other operations such as inserting a new element at an arbitrary 
position are not 

: 

• Precondition: An array , a new value  
and an index 

• Postcondition: The array is . 

1. For :
1.1. Set 

2. Set  

The complexity is  (why?)

ArrayInsert(A, i, x)
A = (A0, …, An−1) x

i
(A0, …, Ai−1, x, Ai, …, An−1)

j = n, …, i + 1
Aj ← Aj−1

Ai ← x

O(n)

A0 A1 A2 A3 A4

Example:  ArrayInsert(A, x,2)

A0 A1 A2 A3 A4 A4

A0 A1 A2 A3 A3 A4

A0 A1 A2 A2 A3 A4

A0 A1 x A2 A3 A4

Array Insert: C++ implementation 18

#ifndef __array__ 
#define __array__ 

#include <vector> 

template <typename T> 
void array_insert(std::vector<T>& A, size_t index, const T& x) 
{ 
    assert(index <= A.size()); 
    if (index == A.size()) { 
        A.push_back(x); 
    } else { 
        auto i = A.size(); 
        A.push_back(A[i - 1]); 
        for (--i; i > index; --i) { 
            A[i] = A[i - 1]; 
        } 
        A[index] = x; 
    } 
} 

#endif  // __array__ 

template allows generic type T for the elements (int, string, …)

array implemented as a std::vector

for debugging: raise an error if  called with an illegal index
special case: insert the element as last

Try the code for yourself ! 19

The course source code for the lectures and examples is available here 

https://github.com/vedaldi/b16-code 

First, fork the B16 code repository 20

Create a GitHub user (optionally enrol in GitHub Education) and log in 

Go to https://github.com/vedaldi/b16-code 

Select Fork > + Create a new fork 



Second, start a GitHub Codespace 21

Select Code > Create codespace on main

Edit the code using VS Code in the virtual machine 22

Select B16-Code > part-1 > array.hpp

Build any of  the provided programs (but the exercises are incomplete) 23

Press [All] next to Build at the bottom of  the screen and select [array_driver] 

Press Build 

You can now execute the program 24

Press the ▶ button and select [array_driver] 

This will run the code in a terminal, which allows you to see the output



You can debug the program 25

Add a breakpoint to the code by clicking to the left of  any line number 

 

Press the debug button in the bottom bar 

You can step through the code and observe the variables 26

Use the Variables watch to observe the variables 

Use the stepping controls to execute one line of  the program at a time 

Once you are done, do not forget to stop the codespace 27

Codespace can only be used for 60 hours per month (90 with the Education account) 

Go to https://github.com/codespaces 

Select … > Stop codespace 

Stacks 28

A stack  is a sequence of  elements that allow fast 
storage and retrieval at one end 

Also known as a LIFO (last in, first out) data structure 

This means that there are two efficient  operations: 

1. Pushing a new element  on the “top” of   

2. Popping the element at the “top” of   

S

Θ(1)

x S

S

push pop

stack



Stack push and pop 29

We implement a stack via a structure  with fields: 

•  a pre-allocated array with space for  elements 

•  the index pointing to the head of  the stack 

: 
1. Set 

2. Set 

: 
1. Set 
2. Return 

S

S . A n

S . i

StackPush(S, x)
S . AS.i ← x
S . i ← S . i + 1

StackPop(S)
S . i ← S . i − 1

S . AS.i

i

S

3S

i StackPush(S,3)

3 7

i

S

StackPush(S,7)

3 7 4

i

S

StackPush(S,4)

3 7

i

S

StackPop(S) → 4

3

i

S

StackPop(S) → 7

i

S

StackPop(S) → 3

Queues 30

A queue  is a sequence of  elements that allows 
quickly adding elements from one end and 
removing them from the other 

A queue is also known as a FIFO (first in, first out) 
data structure 

This means that there are two efficient  
operations: 

1. Enqueuing a new element  at the back of   

2. Dequeuing the element at the front of   

Q Θ(1)

x Q

Q

Enqueue Dequeue

Back of  the queue Front of  the queue

Enqueue and dequeue 31

We implement a queue via a structure  with fields: 

• 	 a pre-allocated array 

• 	 index of  predecessor of  the queue back 

• 	 number of  enqueued elements 

We arrange the array  in a ring buffer, storing 
elements in a “circular” manner 

: 
1.

2.
3.  
4. If  : 

4.1.  

: 
1. Let 
2. If :

2.1. Set 
3. Set 
4. Return 

Q

Q . A

Q . i

Q . n

A

Enqueue(Q, x)
Q . Ai ← x
Q . n ← Q . n + 1
Q . i ← |A | − 1

Q . i = 0
Q . i ← Q . i − 1

Dequeue(Q)
j ← Q . i + Q . n

j ≥ |Q . A |
j ← j − |Q . A |

Q . n ← Q . n − 1
Q . Aj

Queue: logical implementation using an infinite buffer 32

n = 0

i, i + n = 0

3Enqueue(Q, 3) n = 1

i + n = 0i = − 1

34Enqueue(Q, 4) n = 2

i + n = 0i = − 2

31 4Enqueue(Q, 1) n = 3

i = − 3 i + n = 0

1 4Dequeue(Q) → 3 n = 2

i = − 2 i + n = − 1



Queue: “physical” implementation using a ring buffer 33

i = |A | − 1i = 0

repetition repetitionrepetition repetitionA (ring buffer)

Ring buffer 34

A (ring buffer)repetition repetition

7

repetition repetition

0 1 2 3 4-5 -4 -3 -2 -1 5 6 7 8 9-7 -6-8-9 10 11 12

Ring buffer 35

repetition repetitionrepetition repetition

-5

-4

-3-2

-1

5

6

78

9-6

-7 -8

-9

10

11

12

0

1

23

4

A (ring buffer)

The ring buffer views a finite 
array  as an infinite one 

This works correctly as long as 
the part of  the infinite array 
which is utilised is contiguous 
and of  size at most 

A

|A |

Queue: extended example using a ring buffer 36

i, i + n

A n = 0

3A n = 1

i = 4i + n − |A | Enqueue(Q, 3)

3 4

i

A n = 2

i + n − |A | Enqueue(Q, 4)

3 1 4A n = 3

ii + n − |A | Enqueue(Q,1)

3 1 4A n = 2

i i + n Dequeue(Q) → 3

3 1 4A n = 1

i i + n Dequeue(Q) → 4

3 7 1 4A n = 2

i i + n Enqueue(Q, 7)

3 8 7 1 4A n = 3

i i + n Enqueue(Q, 8)

4 8 7 1 4

i

A n = 4

i + n − |A | Enqueue(Q, 4)

3 8 7 1 5A n = 5

i + n − |A | , i Enqueue(Q, 5)

3 8 7 1 4A n = 4

ii + n − |A | Dequeue(Q) → 1



Linked lists 37

A linked list  represents a sequence of  elements, 
similarly to an array 

Differently from an array, a linked list does not 
support fast random access to its element, but can 
significantly accelerate other operations such as 
insertion 

The linked list is given by a chain of  nodes  

Each node  is a structure with fields: 

• 	value associated to the node 

• 	 next node in the chain 

We use a fake sentinel node as a “pointer” to the 
first element in the list

L N

N

N . value

N . next

next
NA

next
value

sentinel

next
value

next
value

next
value

next
value

∅

value

first element last element

Linked lists: insertion 38

Inserting a new node in a linked list is done in time  via simple pointer operations 

 
1. Create a new node 
2. Set 
3. Set 
4. Set 

Θ(1)

ListInsertAfter(Q, x) :
N

N . next ← Q . next
N . value ← x
Q . next ← N

sentinel

next
NA

next
value

next
value

next
value

next
value

next
value

∅

value

next

Q

N x

Linked lists: removal 39

 is similar to , and is left as an exerciseListRemoveAfter(Q) ListInsertAfter(Q)

next
NA

sentinel

next
value

next
value

next
value

next
value

next
value

∅

value

removedQ

Linked lists: value-based search 40

Searching for a node with a given value requires scanning the list in  time 

 
1. While  and  are not :

1.1. If  return 
1.2. Set 

2. Return 

O(n)

ListFindPredecessor(Q, x) :
Q Q . next 𝙽𝙸𝙻
Q . next . value = x Q

Q ← Q . next
𝙽𝙸𝙻

ListFindPredecessor(Q,7)

sentinel
next
NA

next
100

next
4

next
7

next
88

next
2

∅

6

Q Q . next

next
NA

next
100

next
4

next
7

next
88

next
2

∅

6

Q Q . next

next
NA

next
100

next
4

next
7

next
88

next
2

∅

6

Q Q . next
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Binary trees 42

Informally, a binary tree is a collection of  nodes, 
each of  which can have a left child and a right child, without loops

v0

v1 v4

v2 v3

root node

leaf  node

node
no loops

rightleft

Binary trees: formal definition 43

A binary tree   is a finite set such that: 

•  is the empty set, or 

•  is the union of  three disjoint sets: 

• the root  

• the left child , which is also a binary tree 

• the right child , which is also a binary tree

T

T = {}

T = {r} ∪ L ∪ R
{r}

L
R

{v0} ∪ ⋅ ∪ ⋅

{v4} ∪ ⋅ ∪ ⋅

{} {}

{v1} ∪ ⋅ ∪ ⋅

{v2} ∪ ⋅ ∪ ⋅

{} {}

{v3} ∪ ⋅ ∪ ⋅

{} {}

v0

v1 v4

v2 v3

T = {v0} ∪ ({v1} ∪
({v2} ∪ {} ∪ {}) ∪
({v3} ∪ {} ∪ {})) ∪

({v4} ∪ {} ∪ {}})

= =

Height of  a binary tree 44

The height  of  a binary tree is the number of  links from the root to the deepest leaf  

Formally: 

h(T)

h(T) = {1 + max{h(L), h(R)}, if T = {r} ∪ L ∪ R
−1, if T = {}

h = 0 h = 0

h = 0 v4

v2 v3

h = − 1 {} {}

v1 v4

v2 v3

h = 1

v0

v1 v4

v2 v3

h = 2



Perfect binary tree 45

A binary tree is perfect if  any of  the following two equivalent conditions is satisfied: 

1. It has a maximal number of  nodes for its height  

2. It has  nodes

h

2h+1 − 1

v0

v1 v4

v2 v3

Not perfect

v0

v1 v4

v2 v3 v5 v6

Perfect

2h − 1 2h − 1

2 ⋅ (2h − 1) + 1 = 2h+1 − 1

h − 1

h

Implementing a binary tree 46

Operations 

If   is a binary tree, the following operations are 
defined: 

•  returns the left child of  tree  

•  returns the right child of  tree  

•  tells whether the tree  is empty or not 

•  returns the value (data) associated to the 
root of  tree  

We can express many algorithm based only on 
these four operations! 

Canonical representation 

A binary tree can be represented by an object  
which is either: 

• The null object  (to represent an empty tree) 

• A data structure with fields: 

• 	 the left child object 

• 	 the right child object 

• 	 the node’s value 

In this case, the four operations are simply: 

•  

•  

•  

•

T

left(T) T

right(T) T

empty(T) T

value(T)
T

N

𝙽𝙸𝙻

N . left
N . right
N . value

left(N) = N . left
right(N) = N . right
empty(N) = δ{N=𝙽𝙸𝙻}

value(N) = N . value

Computing the height of  a binary tree 47

The formula for the height of  a binary tree 

 

translates directly into a recursive algorithm: 

: 
1. If :

1.1. Return the value 
2. Let 
3. Let 
4. Let 

5. Let 

6. Return 

The complexity is , because the algorithm visits 
each node once 
 
A note on encapsulation: 

• This algorithm is agnostic on the choice of  a 
representation for the binary tree 

• Instead, it only requires the functions ,  
and  to be defined

h(T) = {1 + max{h(L), h(R)}, if T = {r} ∪ L ∪ R
−1, if T = {}

BinaryTreeHeight(T)
empty(T)

−1
L ← left(T)
R ← right(T)
hL ← BinaryTreeHeight(L)
hR ← BinaryTreeHeight(R)

1 + max{hL, hR}

O(n)

empty left
right

Depth-first traversal of  a binary tree 48

Traversing a tree means visiting and processing all the 
nodes once in a certain order 

Depth-first traversal starts from the root and visits 
recursively the left and right children 

: 
1. If :

1.1. Return
2. Process  // pre-order processing
3. Let 
4. Let 
5. Let 
6. Process // in-order processing
7. Let 
8. Process // post-order processing

DFTraversal(T)
empty(T)

value(T)
L ← left(T)
R ← right(T)
DFTraversal(L)

value(T)
DFTraversal(R)

value(T)

Depth-first visit order	  
Pre-order 	 processing order 	  
In-order 	 processing order	  
Post-order	 processing order	

v0, v1, v2, v3, v4
v0, v1, v2, v3, v4
v2, v1, v3, v0, v4
v2, v3, v1, v4, v0

v0

v1 v4

v2 v3



Breadth-first traversal of  a binary tree 49

Breadth-first traversal visits the nodes layer by 
layer, using a queue to remember which subtree to 
visit next 

: 

• Precondition: the queue  contains the tree as 
sole element

1. While  is not empty:
1.1. Let 
1.2. Process 
1.3. Let 
1.4. Let 
1.5. If not :

1.5.1.
1.6. If not :

1.6.1.

BFTraversal(Q)
Q = {T}

Q
T ← Dequeue(Q)

value(T)
L ← left(T)
R ← right(T)

empty(L)
Enqueue(Q, L)

empty(R)
Enqueue(Q, R)

Breadth-first visit/process order: 
v0, v1, v4, v2, v3

v0

v1 v4

v2 v3

A binary tree  is a binary search tree (BST) iff  

• it is empty (i.e., ), or 

• it is given by , where 

• for all subtrees ,  and 

• for all subtrees ,  and 

•  and  are also BSTs 

T

T = {}

T = {r} ∪ L ∪ R
S ⊂ L value(S) ≤ value(T)
S ⊂ R value(S) > value(T)

L R

Binary search tree 50

6

3 8

2 5

2,3,5 ≤ 6 8 > 6

2 ≤ 3 5 > 3

Note: this diagram shows the value of  
the nodes instead of  the node indices

Searching a BST 51

Searching a BST  for a value  is done by 
descending from the root to a leaf, “turning” left or 
right depending on value comparisons 

 
1. If  or , then return 
2. Otherwise, let 
3. If :

3.1. Return 
4. Else:

4.1. Let 
4.2. If  is empty, return 
4.3. Otherwise, return  

BSTSearch complexity is  as a function of  the 
three height  

For a perfect (or sufficiently balanced) tree,  so 
the complexity is  as a function of  the tree 
size  

However, for a degenerate tree (a chain), , 
so the complexity is  

T x

BSTSearch(T, x) :
empty(T) value(T) = x T

T = {r} ∪ L ∪ R
x < value(T)

BSTSearch(L, x)

S ← BSTSearch(R, x)
S T

S

O(h)
h

n ∝ 2h

O(log n)
n

n = h + 1
O(n)

6

3 8

2 5

8

6

25

23

2

 👎O(n) 👍O(log n)

BST search: example 52

Searching for the value 5 

Steps: 
1. 5 is less than 6, so search left
2. 5 is larger than 3, so search right
3. 5 is found  

Searching for the value 2 

Steps: 
1. 2 is less than 6, so search left
2. 2 is less than 3, so search left again
3. 2 is larger than 1, but there is no right child: stop

6

3 8

1 5

BSTSearch(T, 5)

BSTSearch(T.L, 5)

BSTSearch(T.L.R, 5)

8

6

3

1 5

BSTSearch(T, 2)

BSTSearch(T.L, 2)

BSTSearch(T.L.L, 2)



Building a BST 53

We can trivially build a BST  by adding a new 
element  a time 

The process is similar to searching a BST, except 
that a new leaf  node is added to the tree to contain 
the new value 

However, this process is not guaranteed to return a 
tree which is perfect or even reasonably balanced 

 

• Precondition:  is a BST

• Postcondition: Returns the same BST , extended with 
the new value 

1. If  is  then return
2. If  then:

2.1. Set 
3. Else:

3.1. Set 
4. Return 

T
x

BSTInsert(N, x) :
N

N
x

N 𝙽𝙸𝙻 {x, 𝙽𝙸𝙻, 𝙽𝙸𝙻}
x ≤ N . value

N . left ← BSTInsert(N . left, x)

N . right ← BSTInsert(N . right, x)
N

Complete binary trees 54

A binary tree is complete if  all levels are full, except the last one which is partially filled from left to right

6

3 8

1 5

6

3 8

1 5 1 5

6

3 8

5

Complete Perfect Neither

Representing a complete binary tree as an array 55

We can enumerate the elements of  a complete 
tree from left to right and top to bottom, 
placing them in an array 

The process can be inverted to reconstruct the 
complete tree unambiguously 

Let  be the index of  a given node in the array. 
Then: 

•  

•  

•  

•  

•

i

left(i) = 2i + 1

right(i) = 2i + 2

parent(i) = ⌊(i − 1)/2⌋

empty(i) = δ{i≥|A|}

value(i) = Ai

6

3 8

1 5

6 3 8 1 5
0 1 2 3 4 5 6 7

flatten unflatten

i = 1

parent(i) = ⌊(i − 1)/2⌋ = 0

left(i) = 2i + 1 = 3 right(i) = 2i + 2 = 4

Heaps 56

A binary tree  is a max heap iff: 

•  is empty, or 

• for all subtrees ,  

Note: the definition may look similar to a BST, but 
it is very different; in particular, we do not 
distinguish between left and right children 

By construction, the heap’s root is always the node 
in the tree with largest value 

A min heap is similar, but with smaller instead of  
larger elements towards the top 

 
 
 
 
 
 
 
 
 
 

T

T

S ⊂ T value(S) ≤ value(T)
15

10 7

6 3

3,6,7,10 ≤ 15

3,6 ≤ 10



Maintaining the heap property: SiftUp & SiftDown 57

We can “fix” a tree  which is a heap except for the 
value of  subtree , which is “defective” 

 is used to fix the tree if  the value of   is 
too small 

• It works by swapping the value of   with its 
parent until a suitable place in the tree is found 

 is used to fix the tree if  the value of   is 
too large 

• It works by swapping the value of   with the 
“largest” child until a suitable place in the tree is 
found 

: 

• Precondition:  is a subtree of a binary tree  which 
already has the heap property, or the latter can be restored 
by reducing 

• Postcondition: The tree  is the same as before, except 
that the subtree values have been permuted to satisfy the 
heap property

1. If  return
2. If  return
3. Swap the values of  and 
4. Call recursively 

T
S

SiftUp(S) S

S

SiftDown(S) S

S

SiftUp(S)
S T

value(S)
T

empty(parent(S))
value(parent(S)) ≥ value(S)

S parent(S)
SiftUp(parent(S))

SiftUp: example 58

15

10 7

6 20

too 
large

15

20 7

6 10

swap

15

20 7

6 10

too 
large

20

15 7

6 10

swap

20

15 7

6 10

OK

Building a heap 59

Given an array , the goal is to transform it into a 
valid heap by swapping its elements 

We build a heap from the bottom up: 

• The leaves are heaps of  one element 

• Moving one level up, we merge pairs of  subtrees 
by adding a new root element to link them 

• Because the new root can be “defective”, we call  
 on it to “fix” it 

: 

• Precondition: An array 

• Postcondition: An array  that, interpreted as a complete 
binary tree, has the heap property

1. For :
1.1. Interpret the subarray  as a complete 

binary tree 
1.2. Call 

A

SiftDown

BuildHeap(A)
A
A

i = ⌊ |A | /2⌋ − 1,…,0
(Ai, …, A|A|−1)

S
SiftDown(S)

Building a heap: example 60

3

6 10

1 7

3 6 10 1 7

0 1 2 3 4

3

6 10

1 7

step 1

3

7 10

1 6

SiftDown(1)

3

7 10

1 6

step 2

SiftDown(0)

10

7 3

1 6

input array

3

7 10

1 6

3 7 10 1 6

0 1 2 3 4

partial heap

10 7 3 1 6

0 1 2 3 4

10

7 3

1 6

final heap



BuildHeap: complexity 61

Each call to  is , where  is the 
height of  the subtree  

If   is the height of  the tree, there are  subtrees 
of  height  

The cost of  calling  for level  is thus  
 

The total cost of  BuildHeap is obtained by 
summing over all levels: 

 

Recall that  

Hence,  complexity is 

SiftDown(S) O(i) i
S

h 2h−i

i

SiftDown i
O(i ⋅ 2h−i)

h

∑
i=0

i ⋅ 2h−i = 2h+1 − h − 2 ∈ O(2h)

h ∝ log n

BuildHeap O(n)

h

i

2h−i

Heap sort 62

A heap can be used to sort an array 

First, the array is transformed into a heap using 
 

Then, the top (maximum) element is extracted and 
the heap property is restored calling  

Then, the top (now second largest) element is 
extracted, the heap property is restored, and so on 

The cost is , same as for MergeSort (could 
have it been better?) 

: 
1. Call 
2. For :

2.1. Swap elements  and 
2.2. Interpret the subarray  as a complete 

binary tree  and call 

BuildHeap

SiftDown

O(n log n)

HeapSort(A)
BuildHeap(A)
i = |A | − 1,…,1

A0 Ai

(A0, …, Ai−1)
T SiftDown(T)

Heap Sort: example 63

3

6 10

1 7

3 6 10 1 7

0 1 2 3 4

10

7 3

1 6

BuildHeap

10 7 3 1 6

0 1 2 3 4

6

7 3

1 10

Swap  and A0 A4

6 7 3 1 10

0 1 2 3 4

SiftDown(0)
7

6 3

1 10

7 6 3 1 10

0 1 2 3 4

1

6 3

7 10

1 6 3 7 10

0 1 2 3 4

Swap  and A0 A3

6

1 3

7 10

6 1 3 7 10

0 1 2 3 4

SiftDown(0)
3

1 6

7 10

3 1 6 7 10

0 1 2 3 4

Swap  and A0 A2

3

1 6

7 10

3 1 6 7 10

0 1 2 3 4

SiftDown(0)

Heap Sort: example 64

1

6 3

7 10

1 6 3 7 10

0 1 2 3 4

Swap  and A0 A3

6

1 3

7 10

6 1 3 7 10

0 1 2 3 4

SiftDown(0)
3

1 6

7 10

3 1 6 7 10

0 1 2 3 4

Swap  and A0 A2

3

1 6

7 10

3 1 6 7 10

0 1 2 3 4

SiftDown(0)

1

1 6

7 10

1 3 6 7 10

0 1 2 3 4

Swap  and A0 A1



Priority queues 65

We can use a heap to implement a priority 
queue with two operations: 

•  to add an element  to the 
queue 

•  to extract the “highest 
priority” (largest) element from the queue 

The queue  is a data structure with fields 

• 	 preallocated array for storing elements 

• 	 number of  elements in the queue 

: 
1. Let 
2. Set 
3. Interpret  as a complete binary tree  

and let  be the subtree rooted at 
4. Call 
5. Set 

: 
1. Let 
2. Swap  and 
3. Interpret  as a complete binary tree 
4. Call 
5. Set 
6. Return 

PriorityEnqueue(Q, x) x

PriorityDequeue(Q)

Q

Q . A

Q . size

PriorityEnqueue(Q, x)
i ← Q . size
Q . Ai ← x

(Q . A0, …, Q . Ai) T
S Ai

SiftUp(S)
Q . size ← i + 1

PriorityDequeue(Q, x)
i ← Q . size

A0 Ai

(Q . A0, …, Q . Ai−1) T
SiftDown(T)
Q . size ← i − 1

Ai

PriorityEnqueue: example 66

10

7 3

1 6

10 7 3 1 6

0 1 2 3 4 5

A5 ← 15

PriorityEnqueue(Q, 15)

10

7 3

1 6 15

10 7 3 1 6 15

0 1 2 3 4 5

15

7 10

1 6 3

15 7 10 1 6 3

0 1 2 3 4 5

15

7 10

1 6 3

15 7 10 1 6 3

0 1 2 3 4 5

SiftUp(5)

PriorityDequeue: example 67

A0 ↔ A5

PriorityDequeue(Q)

3

7 10

1 6 15

3 7 10 1 6 15

0 1 2 3 4 5 6

3

7 10

1 6 15

3 7 10 1 6 15

0 1 2 3 4 5 6

10

7 3

1 6

15

10 7 3 1 6

0 1 2 3 4 5 6

SiftDown(0)15

7 10

1 6 3

15 7 10 1 6 3

0 1 2 3 4 5 6
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Hash tables as a generalisation of  arrays 69

Arrays 

• Map indices  to values  

• Allow fast  access to any of  the indices 

However, we often wish to index data based on 
different types of  indices 

For example, in a dictionary we would index entries 
based on words, which are strings, not integers 

Hash tables 

• Map keys  (e.g., ints, strings) to values  

• Allow fast  access on average 

Hence, a hash table generalises an array to keys 
other than consecutive integers

{0,1,…, n − 1} i ↦ Ai

Θ(1)

𝒦 k ↦ Ak

Θ(1)

Hash tables via chaining 70

The simplest implementation of  a hash table is a 
a linked list  containing a chain of  key-value pairs 

 

Complexity: 

• Retrieving a key  requires scanning the entire 
list for a match, with worst case cost  

• Inserting a new element  is : just call 
 

• But, if  the inserted key  can already exist, one 
needs to check first if  the key is already present 
to avoid duplicates, with cost  

This is also the average case cost, as on average key  
is found half-way through the list 

 
1.
2. If   then:

2.1. Call 
3. Else:

3.1. set   

 
1.
2. If   then:

2.1. Return 
3. Else:

3.1. Return 

L
⟨k, v⟩

k
Θ(n)

⟨k, v⟩ Θ(1)
ListInsertAfter(L, k, v)

k

Θ(n)

k

ChainInsert(L, k, v) :
N ← ListFindPredecessor(L, ⟨k, ⋆ ⟩)

N = NIL
ListInsertAfer(L, ⟨k, v⟩)

N . next . value ← ⟨k, v⟩

ChainRetrieve(L, k) :
N ← ListFindPredecessor(L, ⟨k, ⋆ ⟩)

N = NIL
NIL

N . next . value . v

Hash table via chaining: example 71

next
NA

next
“Eve”

23

next
“Joe”

44

next
“Bob”

62

next
“Tim”

11

next
“Ann”

45

∅

“Zoe”
50

sentinel first element last element

ListFindPredecessor(Q, "Tim")

Q Q . nextQ Q . next

next
NA

next
“Eve”

23

next
“Joe”

44

next
“Bob”

62

next
“Tim”

11

next
“Ann”

45

∅

“Zoe”
50

Q Q . nextQ Q . next

next
NA

next
“Eve”

23

next
“Joe”

44

next
“Bob”

62

next
“Tim”

11

next
“Ann”

45

∅

“Zoe”
50

Q Q . nextQ Q . next

⋯

Multiple chains 72

We can significantly speed up access by using 
multiple, short chains 

Each chain is tasked with storing a subset of  keys 

The hash table is a structure  with a single field: 

• 	 an array of   chains  

The load factor  is the average number of  
elements per chain 

 

We also require a hash function  mapping keys  
to chains  

 

The cost of  the hash function is independent of   
and  (  complexity) 

Intuition 

• We expect the cost of  accessing an element in 
the hash table to be  on average 

• If  so, and if  the number of  chains  is 
proportional to the number of  elements  added 
to the hash table, then the access cost is , the 
same as for an array

H

H . A m L0, …, Lm−1

α

α =
n
m

h k
s = h(k)

h : 𝒦 → {0,1,…, m − 1}

n
m Θ(1)

O(α)

m = Ω(n)
n
O(1)



Multiple chains: insert and retrieve 73

 
1. Let 
2. Let 
3. Call 

 
1. Let 
2. Let 
3. Return 

HashInsert(H, k, v) :
s ← h(k)
L ← H . A[s]
ChainInsert(L, k, v)

HashRetrieve(L, k) :
s ← h(k)
L ← H . A[s]

ChainRetrieve(L, k)

Example hash function  h

h(Eve) = 0
h(Joe) = 0

h(Bob) = 1
h(Tim) = 1
h(Ann) = 2
h(Zoe) = 2

next
NA

next
“Eve”

23

∅

“Joe”
44

next
NA

next
“Bob”

62

∅

“Tim”
11

next
NA

next
“Ann”

45

∅

“Zoe”
50

s = 0

s = 1

s = 2

k

h

hash 
value

key

Hash functions 74

Hash functions goals 

The goals of  a hash function  are: 

• To map keys  to one of   slots 

• To do so quickly (  complexity for all keys) 

• To do so uniformly, meaning that different keys 
can be expected to spread equally in different 
slots 

Example for string keys 

•  is a string encoded in ASCII  

• Set  

• Set  to be the ASCII value of  the first 
character 

This satisfies some of  the goals: 

✓Maps strings to  slots 

✓Does so quickly (just read the first character) 

✗ But the key distribution is generally not uniform 
because certain characters are much more 
frequent than others

h

k m

Θ(1)

k

m = 128

h(k)

m = 128

C
ha

ra
ct

er
 fr

eq
ue

nc
y

Building hash functions 75

Keys as integers 

Any key  can always be thought of  as a (large) 
natural number: 

• Take the  bytes  used to represent the key in 
memory 

• Interpret the key as the natural number: 

	  

The division method 

Define: 

 

Thus  is the remainder of  dividing  by  

• The remainder is always in the range  to  

• The remainder is relatively quick to compute 

• Is the reminder uniformly distributed, and thus a 
good hash function?

k

C ci

C−1

∑
i=0

ci ⋅ 256i

h(k) = k mod m

h(k) k m

0 m − 1

Remainder method: choosing m 76

Criterion: we would like  to depend on all the bits of  the binary representation of  the number  

Choosing  to be a prime number achieves this 

To show this, assume that  and  differ only by bit , so that  

Then: 

	  

This shows that two keys that differ by a single bit have different hash values

h(k) k

m

k k′ i k′ = k + 2i

h(k′ ) − h(k) = (k′ mod m) − (k mod m)
= k′ − k mod m
= 2i mod m
≠ 0



Average cost analysis 77

In the worst case, all keys are hashed to the same slot 
and insertion and retrieval of  keys is   

Under suitable statistical assumptions, the average 
case is much better 

Simple Uniform Hashing Assumption 
(SUHA) 

• The keys  added to the hash table are selected 
i.i.d. at random 

• All hash values are equally probable: 
 

 
 
for all  

Ω(n)

k

P[h(k) = s] = 1/m

s ∈ [0, m − 1]

Average key retrieval cost 78

Theorem: missing key cost 

Under the SUHA, the number of  list elements 
visited in attempting to retrieve a key  that is not 
contained in a hash table , averaged over all 
possible keys and tables, is  

Proof  (sketch) 

This is because the average length of  chains is 
 if  the  elements in the table spread 

uniformly to the  chains 

Since the key is missing, the entire chain must be 
visited before giving up 

Theorem: existing key cost 

Under the SUHA, the number of  list elements 
visited by retrieving a key  that is contained in a 
hash table , averaged over all possible keys and 
tables, is  

Proof  (sketch) 

This proof, due to D. Knuth, is difficult and 
optional 

Intuitively, if  the key is present in the hash table, on 
average we need to visit only half  a chain before 
finding it

k
H
1 + α

α = n/m n
m

k
H

1 + α/2 − α/2n
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Directed graphs 80

A directed graph  is given by 

• a set ot vertices  and 

• a set of  edges  

An edge  is drawn as an arrow  

Example 

A directed graph can be represented by an 
adjacency matrix  such that 

•  

•  iff  

G = (V, E)

V = {v1, …, v|V|}

E ⊂ V × V

(vi, vj) ∈ E vi → vj

A

A ∈ {0,1}|V|×|V|

Aij = 1 (vi, vj) ∈ E

v1

v2

v3 v4 A =

0 1 0 0
0 0 1 0
1 0 0 1
0 0 0 1



Weighted graph 81

A weighted graph  has weights  
associated to the edges 

It can be represented by a weighted adjacency 
matrix  where 

•  if   

•  otherwise

(G, w) w(e) ∈ ℝ
W

Wij = w(vi, vj) (vi, vj) ∈ E

Wij = ∞

Example 

v1

v2

v3 v4

3 2

2

6
W =

∞ 3 6 ∞
∞ ∞ 2 ∞
∞ ∞ ∞ 2
∞ ∞ ∞ ∞

Paths 82

A path in an directed graph is a sequence of  
vertices  such that  

The path connects the source  to the 
destination  

The length of  the path is the number of  edges in it 
(i.e., the number of  vertices minus 1) 

In a weighed directed graph, the weight of  a 
path is the sum of  the edge weights: 

	

p = (v1, v2, …, vn) (vi, vi+1) ∈ E

v1
vn

w(p) =
n−1

∑
i=1

w(vi, vi+1)

Example 

•  

•  

•

p = (v1, v2, v3, v4)

length(p) = 3

w(p) = 7
v1

v2

v3 v4

3 2

2

6
source destination

Path composition and subpaths 83

We can compose paths by concatenating them. 
Let: 

•   connects  to  

•  connects  to  

Note that the destination of   is the source of   

Then  connects  to  

If  , we say that  and  are 
subpaths of  path p′ = (v1, …, v2) v1 v2

p′ ′ = (v2, …, v3) v2 v3

p′ p′ ′ 

p = p′ ⊕ p′ ′ = (v1, …, v2, …, v3) v1 v3

p = p′ ⊕ p′ ′ ⊕ p′ ′ ′ p′ , p′ ′ p′ ′ ′ 

p

Example 

p = (v1, v2, v3, v4) = (v1, v2, v3) ⊕ (v3, v4)
v1

v2

v3 v4

3 2

2

6

Cycles 84

A cycle is a path  where source and 
destination coincide 

Examples 

A negative cycle is a cycle whose weight is 
negative 

Example

p = (v1, …, v1)

v1

v2

v3 v4

v1

v2

v3 v4

(v1, v2, v3, v1)

(v4, v4)

v1

v2

v3 v4

3 2

−3
2

6

3

w(v2, v3, v2) = − 1



Shortest paths 85

A path  connecting  to  is shortest if  no path with a smaller weight also connects  to  
 
 

 	  	 (shortest) 
 

	  	 (not shortest) 

 
If  there is a negative cycle, then a shortest path may not be defined 

	 	 (arbitrarily short)

p u v u v

w(v1, v2, v3, v4) = 7

w(v1, v3, v4) = 8

w(v1, v2, v3, v2, v3, …, v3, v4)

v1

v2

v3 v4

3 2

2

6

v1

v2

v3 v4

3 2

2

6

v1

v2

v3 v4

3 2

−3
2

6

Optimal substructure of  shortest paths 86

Theorem 

If   is a shortest path and  are two 
subpaths, then  and  are also shortest paths 

Proof  

• Let  and  

• By definition  

• If   is not shortest, then we can find a path  
from  to  such that  

• Hence  connects the same vertices as  and 
has smaller weight  

• Hence  is not a shortest path

p p′ ⊕ p′ ′ = p
p′ p′ ′ 

p′ = (u, …, r) p′ ′ = (r, …, v)

w(p) = w(p′ ) + w(p′ ′ )

p′ q
u r w(q) < w(p′ )

q ⊕ p′ ′ p
w(q ⊕ p′ ′ ) < w(p)

p

u ⋯ r ⋯ v

p′ p′ ′ 

p

⋯ q

Shortest paths problems 87

Single-source shortest paths (SSSP) 

Given an oriented weighted graph  and a 
source vertex , find shortest paths to all vertices 

 

All-pairs shortest paths (APSP) 

Given an oriented weighted graph , find 
shortest paths between all pairs of  vertices  

(G, w)
u

v ∈ V

(G, w)
u, v ∈ V

v1 v2

v4

v5

3

1

1

2

6

v3

2

4

Representing shortest paths 88

The shortest paths  connecting all pair of  vertices 
 to  can be encoded by using a predecessor 

matrix  and a distance matrix 
 such that: 

•  is the node before  in the path   

•  

To reconstruct the shortest paths, backtrack: 

• Start with  and 	 so the path is  

• Let  	 so the path is  

• Let  	 so the path is  

• etc.

puv
u v

P ∈ V|V|×|V|

D ∈ (ℝ+ ∪ {∞})|V|×|V|

r = Puv v puv

Duv = w(puv)

u v (u, …, v)

r = Puv (u, …, r, v)

t = Pur (u, …, t, r, v)

v1 v2

v4

v5

3

1

1

2

6

v3

2

4

P =

1 1 2 2 3
3 2 2 2 3
3 1 3 2 3
4 1 2 4 4
⋅ ⋅ ⋅ ⋅ 5

D =

0 1 3 5 5
5 0 2 4 4
3 4 0 8 2
6 7 9 0 1
∞ ∞ ∞ ∞ 0

for SSSP, we only need one row



Bellman-Ford SSSP 89

The Bellman-Ford algorithm computes the 
shortest paths  from a fixed source  to all vertices 
 

It works incrementally, by establishing all shortest 
paths of  length 1, then of  length 2 and so on 

Note: We assume for simplicity that there are no 
negative cycles, but the algorithm can be modified 
to detect such cycles 

Complexity:  or  for dense graphs 

 
1. For all  in :

1.1. Let  if  or  otherwise
1.2. Let  if  or  otherwise

2. Repeat  times:
2.1. For all 

2.1.1. Call 
3. Return  and 

pv u
v

O( |V | ⋅ |E | ) O( |V |3 )

BellmanFord(V, E, w, u) :
v V

Dv ← 0 v = u ∞
Pv ← u v = u −1

|V | − 1
(r, v) ∈ E

Relax(D, P, w, r, v)
D P

Path relaxation 90

Let  the current path (not necessarily shortest) from  
to  

Let   be an edge with head  and let  be the 
current path from  to  

The  routine replaces  with  if  the latter 
is shorter: 

 
1. If :

1.1. Set 
1.2. Set 
1.3. Return true

2. Return false

pv u
v

(r, v) ∈ E v pr
u r

Relax pv pr ⊕ (r, v)

Relax(D, P, w, r, v) :
Dr + w(r, v) < Dv

Dv ← Dr + w(r, v)
Pv ← r

u

v

r

pv

pr w(r, v)

u

v

r

updated pv

Bellman-Ford: correctness 91

Theorem: After  iterations, the Bellman-Ford 
algorithm has established all shortest paths of  
length at most  (and so all shortest paths after

 iterations). 

Proof  (by induction) 

• Suppose that the theorem is true for  iterations 

• A shortest path  of  length  can bee written 
as  where, due to the optimal 
substructure,   is a shortest path of  
length , hence already established 

• When  is relaxed during iteration , a 
path  from  to  at least as good as  is 
established 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

k

k
|V | − 1

k

p k + 1
p = (u, …, r, v)

p′ = (u, …, r)
k

(r, v) k + 1
puv u v p

u

v
pr

w(r, v)
r

length k

u

v

shortest path pv

length k + 1

=

Floyd-Warshall APSP 92

The Floyd-Warshall algorithm computes paths 
 between all pairs of  vertices  and  

It does so incrementally, by establishing all shortest 
paths with no intermediate nodes (direct edges), 
then all shortest paths with intermediate notes in 
the set , then in the set  and so on 

Complexity:  for sparse or dense graphs 

 
1. For all  in :

1.1. Let  if  or  otherwise
1.2. Let  if  or  otherwise

2. For all  in :
2.1. For all  in :

2.1.1. For all  in :
2.1.1.1. Call 

3. Return  and 

puv u v

{1} {1,2}

O( |V |3 )

FloydWarshall(V, E, w) :
u, v V

Duv ← w(u, v) (u, v) ∈ E ∞
Puv ← u (u, v) ∈ E −1

r V
u V

v V
RelaxFW(D, P, r, u, v)

D P



Path relaxation (Floyd-Warshall variant) 93

Let  the current path (not necessarily shortest) from  
to  

Let   be an intermediate vertex and let  and  
be the current paths from  to  and from  to  

The  routine replaces  with  if  the 
latter is shorter: 

 
1. If :

1.1. Set 
1.2. Set 

puv u
v

r ∈ V pur prv
u r r v

RelaxFW puv pur ⊕ prv

RelaxFW(D, P, r, u, v) :
Dur + Drv < Duv

Duv ← Dur + Drv

Puv ← Prv

u

v

r

puv

pur

prv

u

v

r

updated  (if  shorter)puv

Floyd-Warshall: correctness 94

Theorem: After  iterations, the Floyd-Warshall 
algorithm has established all shortest paths whose 
intermediate vertices are within the set  (and so 
all shortest paths in  iterations). 

Proof  (by induction) 

• Suppose that the theorem is true for  iterations 

• A (simple) shortest path  whose intermediate 
vertices are within  and that contains 
vertex  can be written as  

• The intermediate vertices of  shortest paths 
 and  are in 

, so  and  have already been established 

• When  is relaxed during iteration , a 
path  from  to  at least as good as the shortest 
path  is established 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

r

{1,…, r}
|V |

r

p
{1,…, r + 1}

r + 1 p = (u, …, r + 1,…, v)

p′ = (u, …, r + 1) p′ ′ = (r + 1,…, v)
{1,…, r} p′ p′ ′ 

(r + 1, u, v) r + 1
puv u v
p

u

vp′ 

p′ ′ 

shortest paths with 
intermediate vertices in {1,…, r}

u

v

shortest path with 
intermediate vertices in {1,…, r + 1}

r + 1

Dijkstra’s SSSP algorithm 95

The Dijkstra algorithm solves the SSSP 
problem under the assumptions that there are no 
negative weights 

It establishes the shortest paths  from a source  in 
order of  non-decreasing weight 

To do so, it maintains a set  of  “open” vertices for 
which a shortest path has not yet been established, 
closing one more vertex at each iteration 

Complexity: The naïve implementation of  this 
algorithm shown to the right is  

: 

1. For all  in :
1.1. Let  if  or  otherwise
1.2. Let 

2. Set 
3. Repeat until  is not empty:

3.1. Let 

3.2. Remove  from 
3.3. For all  such that 

3.3.1. Call 
4. Return  and 

pv u

Q

O( |V |3 )

Dijkstra(V, E, w, u)

v V
Dv ← 0 v = u ∞
Pv ← − 1

Q ← V
Q

v* ← argmin
v∈Q

Dv

v* Q
v ∈ Q (v *, v) ∈ E

Relax(D, P, w, v*, v)
D P

Dijkstra’s SSSP algorithm: the invariants 96

The algorithm maintains the following invariant: 

(P1) For all closed vertices ,  is a shortest path 

(P2) For all open vertices , the vector  is given by 

r ∈ V − Q pr

v ∈ Q D
Dv = minr∈Q−V Dr + w(r, v)

u

r

v

open vertices 
Q

closed vertices 
V − Q

prpr

Dv



Why the algorithm finds a shortest path 97

We have: 

• 	 (invariant (P2)) 

• 	 (calculation of  ) 

• 	 (definition of  ) 

By composing argmin and min, the newly determined 
path is , where 

 

Any other path from  to  is of  the form 
 where  is closed and  is 

open.  

Hence,  is indeed shortest: 

Dv = minr∈Q−V Dr + w(r, v)

v* ← argminv∈Q Dv v*

Dv = w(pv) D

pv* = pr* ⊕ (r*, v*)

(r*, v*) = argminr∈Q−V,v∈Q w(pr) + w(r, v)

u v*
q = (u, …, r) ⊕ (r, v) ⊕ (v, …, v*) r v

pv*

w(q) ≥ w(u, …, r) + w(r, v) ≥ w(pr*) + (r*, v*) = w(pv*)

u
r*

r

pr

v

v*

pr*

open vertices 
Q

(v, …, v*)

closed vertices 
V − Q

Dijkstra’s algorithm with a priority queue 98

: 

1. For all  in :
1.1. Let  if  or  otherwise
1.2. Let 

2. Set 
3. Repeat until  is not empty:

3.1. Let 

3.2. Remove  from 
3.3. For all  such that 

3.3.1. Call 
4. Return  and  

: 

1. For all  in :
1.1. Let  if  or  otherwise
1.2. Let 

2. Let  be a min-priority queue.
3. Repeat until  is not empty:

3.1. Let .
3.2. For all  such that :

3.2.1. If calling  returns true, 
then call

.

4. Return  and  

Dijkstra(V, E, w, u)

v V
Dv ← 0 v = u ∞
Pv ← − 1

Q ← V
Q

v* ← argmin
v∈Q

Dv

v* Q
v ∈ Q (v *, v) ∈ E

Relax(D, P, w, v*, v)
D P

DijkstraPriority(V, E, w, u)

v V
Dv ← 0 v = u ∞
Pv ← − 1

Q ← {(0,u)}
Q

(d*, v*) ← PriorityDequeue(Q)
v ∈ Q (v*, v) ∈ E

Relax(D, P, w, v*, v)

PriorityEnqueue(Q, (Dv* + w(v*, v), v))
D P

Dijkstra’s algorithm with a priority queue 99

: 

1. For all  in :
1.1. Let  if  or  otherwise
1.2. Let 

2. Let  be a min-priority queue.
3. Repeat until  is not empty:

3.1. Let .
3.2. For all  such that :

3.2.1. If calling  returns true, 
then call

.

4. Return  and  

DijkstraPriority(V, E, w, u)

v V
Dv ← 0 v = u ∞
Pv ← − 1

Q ← {(0,u)}
Q

(d*, v*) ← PriorityDequeue(Q)
v ∈ Q (v*, v) ∈ E

Relax(D, P, w, v*, v)

PriorityEnqueue(Q, (Dv* + w(v*, v), v))
D P

Using a min-heap, O( |V | log |Q | )

Once for each edge, 
so  and O( |E | log |Q | ) |Q | ≤ |E |

Total 
O(( |V | + |E | )log |E | )

Dense graph 
O( |V |2 log |V | )

Sparse graph 
O( |V | log |V | )

Conclusions 100

Key concepts 

We have covered: 

• Recap of  problems, algorithms, complexity 

• Lower bound on sorting complexity 

• Array, stacks, queues, linked lists 

• Binary trees, binary search trees 

• Heaps, priority queues 

• Hash functions and hashing 

• Graphs and shortest paths 

Hints 

Practice: try implementing and testing algorithms 
“for real”. Use C++ for this course, or any other 
programming language in general (e.g., Python) 

The exercises mostly ask you to write and test 
algorithms in C++ 

Use the provided example code, especially for the 
exercises 

Use the notes as needed: they contain several details 
that can help you to understand the content more 
firmly 


