B16 Software Engineering
Algorithms and Data Structures 1
Lecture 1 of 4: Recap on complexity, quasilinear and linear sort, elementary data structures (arrays, stacks, queues, linked lists)

Dr Andrea Vedaldi
4 lectures, Hilary Term
For lecture notes, tutorial sheets, and updates see
http://www.robots.ox.ac.uk/~vedaldi/teach.html

Module content \& resources

Learning objectives

- Elementary data structures: arrays, stacks, queues, linked lists
- Binary Tree
- Binary Search Trees
- Heaps
- Priority Queues
- Hashing
- Graphs
- Shortest paths

Materials

Slides, Notes, and Examples

- https://www.robots.ox.ac.uk/ ~vedaldi/teach.html

Source code for the Examples

- https://github.com/vedaldi/ b16-code

Feedback Form

Reference text

Introduction to Algorithms, 3rd Edition. Cormen, Leiserson, Rivest, Stein. McGraw-Hill, 1990.

B16 Software Engineering
Algorithms and Data Structures 1
Part 1 of 4: Recap on complexity, quasilinear and linear sort, elementary data structures (arrays, stacks, queues, linked lists)
Dr Andrea Vedaldi
4 lectures, Hilary Term
For lecture notes, tutorial sheets, and updates see http://www.robots.ox.ac.uk/~vedaldi/teach.html

Sorting problem [revision]

Problem definition

- Input: A sequence $A=\left(A_{0}, A_{1}, \ldots, A_{n-1}\right)$
- Output: The same sequence, but permuted so that

$$
A_{i-1} \leq A_{i} \text { for } i=1, \ldots, n-1
$$

Problem instance

- Input: $\quad A=(5,4,3,2,1)$
- Output: $A=(1,2,3,4,5)$

Merge Sort: example [revision]

Merge Sort [revision]

MergeSort(A):

- Precondition: A is an array
- Postcondition: A has the same element as before, but permuted in non-decreasing order

1. If $|A|=1$, return
2. Let $i \leftarrow\lfloor|A| / 2\rfloor$
3. Let $B \leftarrow\left(A_{0}, \ldots, A_{i-1}\right)$
4. Let $C \leftarrow\left(A_{i}, \ldots, A_{|A|-1}\right)$
5. Call MergeSort (B)
6. Call MergeSort (C)
7. Set $A \leftarrow \operatorname{Merge}(B, C)$
(

$\operatorname{Merge}(B, C)$:

- Precondition: arrays B and C are sorted
- Postcondition: return an array A which is the non-decreasing union of arrays B and C

1. Let $i \leftarrow 0$ and $j \leftarrow 0$
2. Reserve space for a sequence A of $|B|+|C|$ elements
3. While $i<|B|$ and $j<|C|$:
3.1. If $B_{i} \leq C_{j}$:
3.1.1. Set $A_{i+j} \leftarrow B_{i}$ and $i \leftarrow i+1$
3.2. Else:
3.2.1. Set $A_{i+j} \leftarrow C_{j}$ and $j \leftarrow j+1$
4. While $i<|B|$:
4.1. Set $A_{i+j} \leftarrow B_{i}$ and $i \leftarrow i+1$
5. While $j<|C|$:

$$
\text { 5.1. Set } A_{i+j} \leftarrow C_{j} \text { and } j \leftarrow j+1
$$

6. Return A

Complexity [revision]

Worst-case complexity

$f(n)$ is the largest possible number of steps to solve any problem instance of size n

Average-case complexity
$f(n)$ is the average possible number of steps to solve "random" problem instances of size n
This requires defining a probability distribution over problem instances

Complexity [revision]

Big-O notation
We say that $f(n)$ is Big- \mathbf{O} of $g(n)$ iff there are constant n_{0}, a such that
$\forall n \geq n_{0}: f(n) \leq a g(n)$
Big- Ω notation
We say that $f(n)$ is $\mathbf{B i g}-\Omega$ of $g(n)$ iff there are constant n_{0}, a such that
$\forall n \geq n_{0}: f(n) \geq a g(n)$

Big- Θ notation
We say that $f(n)$ if $\boldsymbol{B i g}-\Theta$ of $g(n)$ iff it is simultaneously Big-O and Big- Ω of $g(n)$
$f(n)=n^{2}+\cos (4 \pi n)+1 \quad g(n)=n^{2}$

Merge Sort: work done [revision]

$O(n \log n)$

How fast can you sort?

Sorting using comparisons

Algorithm $\delta(A)$ only observes the input sequence A by the results of pairwise comparisons $A_{i}<A_{j}$

It then outputs a permutation of the sequence A which sorts it

A counting argument

There are n ! possible permutations A of the sequence $(1,2, \ldots, n)$

As A varies, the algorithm $\mathcal{S}(A)$ must eventually output n ! different permutations

If $\mathcal{S}(A)$ performs only t comparisons, it can only output 2^{t} possible permutations

Hence, we must have $2^{t} \geq n!$

How fast can you sort?

A counting argument (/ctd)
We thus have the following bound:
$2^{f(n)} \geq n!=\underbrace{n(n-1) \cdots(n / 2)}_{n / 2 \text { terms }}(n / 2-1) \cdots 2 \cdot 1 \geq\left(\frac{n}{2}\right)^{\frac{n}{2}}$
Hence:

$$
f(n) \geq \frac{n}{2} \log _{2} \frac{n}{2} \quad \Rightarrow \quad f(n) \in \Omega(n \log n)
$$

Lower bound on complexity
No sorting algorithm based on pairwise comparisons can be faster than $\Omega(n \log n)$

Sorting faster than $n \log n$

Sorting faster is possible under additional assumptions. For example:

Assumption: the input sequence A consists of natural numbers A_{i} in the range 0 to $k-1$
CountingSort (A, k) :

1. Allocate an array C with k elements initialised to 0
2. For $i=0, \ldots,|A|-1$:
2.1. Set $C_{A_{i}} \leftarrow C_{A_{i}}+1$
3. Let $i \leftarrow 0$ and $j \leftarrow 0$
$\} \begin{aligned} & k \text { steps } \\ & n \text { steps }\end{aligned}$
4. While $j<k$:
4.1. If $C_{j}=0$, then set $j \leftarrow j+1$ and continue with line 4
4.2. Set $A_{i} \leftarrow j$
4.3. Set $C_{j} \leftarrow C_{j}-1$
4.4. Set $i \leftarrow i+1$
at most k times
at most n times

Arrays

An array A is a map from indices $0, \ldots, n-1$ to elements A_{0}, \ldots, A_{n-1} that allows fast access to any of the elements

This means that reading or writing any element A_{i} is a $\Theta(1)$ operation

Typical implementation of an array
An array is implemented by storing elements at equally-spaced memory locations

Then the address of element A_{i} is computed in $\Theta(1)$ time as base $+i$ stride for any value of the index i

In a RAM machine, accessing an element by its address is a $\Theta(1)$ operation

Array insert

While random access with an array is fast, other operations such as inserting a new element at an arbitrary position are not

ArrayInsert(A, i, x)

- Precondition: An array $A=\left(A_{0}, \ldots, A_{n-1}\right)$, a new value x
and an index i
- Postcondition: The array is $\left(A_{0}, \ldots, A_{i-1}, x, A_{i}, \ldots, A_{n-1}\right)$

1. $\operatorname{For} j=n, \ldots, i+1$
1.1. Set $A_{j} \leftarrow A_{j-1}$
2. Set $A_{i} \leftarrow x$

The complexity is $O(n)$ (why?)
Example: ArrayInsert($A, x, 2$)

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|}
\hline A_{0} & A_{1} & x & A_{2} & A_{3} & A_{4} \\
\hline
\end{array}
\end{aligned}
$$

Try the code for yourself!

The course source code for the lectures and examples is available here
https://github.com/vedaldi/b16-code

Array Insert: C++ implementation

```
\#ifndef array
define -array
\#include <vector>
emplate <typename
    oid array insert(std::vector<T>\& A, size_t index, const T\& X)
    assert(index <= A.size()):
    assert index \(<=\) A.size()
if (index \(==\) A.size()) \(\{\)
```

\qquad

``` for debugging: raise an error if called with an illegal index
            A.push_back(x);
    \} else \{
        auto \(i=A . s i z e() ;\)
        for ( - - i; i > index; --
        \(A[i]=A[i-1]\);
        \({ }^{\mathrm{A}}\) [index] \(=\mathrm{x}\)
    \}
\}
\#endif // __array__
```

First, fork the B16 code repository

Create a GitHub user (optionally enrol in GitHub Education) and log in
Go to https://github.com/vedaldi/bl6-code
Select Fork $>+$ Create a new fork

Second, start a GitHub Codespace

Select Code $>$ Create codespace on main

Build any of the provided programs (but the exercises are incomplete) ${ }^{23}$

Press [All] next to Build at the bottom of the screen and select [array_driver]

Press Build

Edit the code using VS Code in the virtual machine
Select B16-Code > part-1 > array. hpp

You can now execute the program

Press the button and select [array_driver]
品 [Clang 14.0.0 x86_64-pc-linux-gnu] 長 Build
[array_driver]

This will run the code in a terminal, which allows you to see the output

```
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS COMMENTS
    /workspaces/b16-code/build/part-1/array_driver
    @ @
```



```
    *)
    Array after inserting 3 at position 0=[3, 2, 1,0]
```


You can debug the program

Add a breakpoint to the code by clicking to the left of any line number

Press the debug button in the bottom bar

Once you are done, do not forget to stop the codespace

Codespace can only be used for 60 hours per month (90 with the Education account)
Go to https://github.com/codespaces
Select ... > Stop codespace

You can step through the code and observe the variables
Use the Variables watch to observe the variables
Use the stepping controls to execute one line of the program at a time

Stacks

28

A stack S is a sequence of elements that allow fast

 storage and retrieval at one endAlso known as a LIFO (last in, first out) data structure
This means that there are two efficient $\Theta(1)$ operations:

1. Pushing a new element x on the "top" of S
2. Popping the element at the "top" of S

stack

Stack push and pop

We implement a stack via a structure S with fields:

- S.A a pre-allocated array with space for n elements
- $S . i$ the index pointing to the head of the stack

StackPush (S, x) :

1. Set $S . A_{S . i} \leftarrow x$
2. Set $S . i \leftarrow S . i+1$

StackPop(S):

1. Set $S . i \leftarrow S . i-1$
2. Return S. $A_{S, i}$

StackPush $(S, 3)$ StackPush(S,7)

StackPop $(S) \rightarrow 4$
$\operatorname{StackPop}(S) \rightarrow 7$
S

StackPop $(S) \rightarrow 3$
S

29

Queues

A queue Q is a sequence of elements that allows quickly adding elements from one end and removing them from the other

A queue is also known as a FIFO (first in, first out) data structure

This means that there are two efficient $\Theta(1)$ operations:

1. Enqueuing a new element x at the back of Q
2. Dequeuing the element at the front of Q

Enqueue and dequeue

We implement a queue via a structure Q with fields:

- Q.A a pre-allocated array
- Q.i index of predecessor of the queue back
- Q.n number of enqueued elements

We arrange the array A in a ring buffer, storing elements in a "circular" manner

Enqueue (Q, x) :

1. $Q . A_{i} \leftarrow x$
2. $Q . n \leftarrow Q . n+1$
3. $Q . i \leftarrow|A|-1$
4. If $Q . i=0$:
4.1. $Q . i \leftarrow Q . i-1$

Dequeue (Q) :

1. Let $j \leftarrow Q . i+Q . n$
2. If $j \geq|Q . A|$:
2.1. Set $j \leftarrow j-|Q . A|$
3. Set $Q . n \leftarrow Q . n-1$
4. Return $Q \cdot A_{j}$

Queue: logical implementation using an infinite buffer

Ring buffer	
The ring buffer views a finite array A as an infinite one This works correctly as long as the part of the infinite array which is utilised is contiguous and of size at most $\|A\|$	reperition

$\underbrace{}_{\text {Repetition }}$ Ring buffer

Linked lists: insertion

Inserting a new node in a linked list is done in time $\Theta(1)$ via simple pointer operations

ListInsertAfter (Q, x)

1. Create a new node N
2. Set N.next $\leftarrow Q$.next
3. Set N. value $\leftarrow x$
4. Set Q. next $\leftarrow N$

Linked lists: removal

ListRemoveAfter (Q) is similar to ListInsertAfter (Q), and is left as an exercise

Linked lists: value-based search

Searching for a node with a given value requires scanning the list in $O(n)$ time

ListFindPredecessor (Q, x) :

1. While Q and Q. next are not NIL:
1.1. If Q. next . value $=x$ return Q
1.2. Set $Q \leftarrow Q$. next
2. Return NIL

ListFindPredecessor(Q,7)

Binary trees: formal definition

A binary tree T is a finite set such that:

- $T=\{ \}$ is the empty set, or
- $T=\{r\} \cup L \cup R$ is the union of three disjoint sets:
- the $\operatorname{root}\{r\}$
- the left child L, which is also a binary tree
- the right child R, which is also a binary tree

Binary trees

Informally, a binary tree is a collection of nodes,

 each of which can have a left child and a right child, without loops

Height of a binary tree

The height $h(T)$ of a binary tree is the number of links from the root to the deepest leaf
Formally:
$h(T)= \begin{cases}1+\max \{h(L), h(R)\}, & \text { if } T=\{r\} \cup L \cup R \\ -1, & \text { if } T=\{ \}\end{cases}$

Perfect binary tree

A binary tree is perfect if any of the following two equivalent conditions is satisfied:

1. It has a maximal number of nodes for its height h
2. It has $2^{h+1}-1$ nodes

Computing the height of a binary tree

The formula for the height of a binary tree
$h(T)= \begin{cases}1+\max \{h(L), h(R)\}, & \text { if } T=\{r\} \cup L \cup R \\ -1, & \text { if } T=\{ \}\end{cases}$
translates directly into a recursive algorithm:
BinaryTreeHeight(T):

1. If empty (T) :
1.1. Return the value -1
2. Let $L \leftarrow \operatorname{left}(T)$
3. Let $R \leftarrow \operatorname{right}(T)$
4. Let $h_{L} \leftarrow$ BinaryTreeHeight (L)
5. Let $h_{R} \leftarrow \operatorname{BinaryTreeHeight}(R)$
6. Return $1+\max \left\{h_{L}, h_{R}\right\}$

The complexity is $O(n)$, because the algorithm visits each node once

A note on encapsulation:

- This algorithm is agnostic on the choice of a representation for the binary tree
- Instead, it only requires the functions empty, left and right to be defined

Implementing a binary tree

Operations

If T is a binary tree, the following operations are defined:

- $\operatorname{left}(T)$ returns the left child of tree T
- $\operatorname{right}(T)$ returns the right child of tree T
- empty (T) tells whether the tree T is empty or not
- value (T) returns the value (data) associated to the root of tree T

We can express many algorithm based only on these four operations!

Canonical representation

A binary tree can be represented by an object N which is either:

- The null object NIL (to represent an empty tree)
- A data structure with fields:
- N.left the left child object
- N. right the right child object
- N.value the node's value

In this case, the four operations are simply:

- $\operatorname{left}(N)=N$. left
- $\operatorname{right}(N)=N$. right
- $\operatorname{empty}(N)=\delta_{\{N=\mathrm{NIL}\}}$
- $\operatorname{value}(N)=N$. value

Depth-first traversal of a binary tree

Traversing a tree means visiting and processing all the nodes once in a certain order

Depth-first traversal starts from the root and visits recursively the left and right children

DFTraversal(T):

1. If empty (T) :
1.1. Return
2. Process value (T)
3. Let $L \leftarrow \operatorname{left}(T)$
4. Let $R \leftarrow \operatorname{right}(T)$
5. Let DFTraversal (L)
6. Process value(T)
7. Let $\mathrm{DFTraversal}(R)$
8. Process value (T)

Depth-first visit order

$v_{0}, v_{1}, v_{2}, v_{3}, v_{4}$ Pre-order processing order $v_{0}, v_{1}, v_{2}, v_{3}, v_{4}$ In-order processing order $v_{2}, v_{1}, v_{3}, v_{0}, v_{4}$ Post-order processing order $v_{2}, v_{3}, v_{1}, v_{4}, v_{0}$

Breadth-first traversal of a binary tree

Breadth-first traversal visits the nodes layer by layer, using a queue to remember which subtree to visit next

BFTraversal(Q):

- Precondition: the queue $Q=\{T\}$ contains the tree as sole element

1. While Q is not empty:
1.1. Let $T \leftarrow \operatorname{Dequeue}(Q)$
1.2. Process value(T)
1.3. Let $L \leftarrow \operatorname{left}(T)$
1.4. Let $R \leftarrow \operatorname{right}(T)$
1.5. If not empty (L) :
1.5.1. Enqueue (Q, L)
1.6. If not empty (R) :
1.6.1. Enqueue (Q, R)

Breadth-first visit/process order: $v_{0}, v_{1}, v_{4}, v_{2}, v_{3}$

Searching a BST

Searching a BST T for a value x is done by descending from the root to a leaf, "turning" left or right depending on value comparisons

BSTSearch (T, x)

1. If $\operatorname{empty}(T)$ or $\operatorname{value}(T)=x$, then return T
2. Otherwise, let $T=\{r\} \cup L \cup R$
3. If $x<\operatorname{value}(T)$:
3.1. Return $\operatorname{BSTSearch}(L, x)$
4. Else:
4.1. Let $S \leftarrow \operatorname{BSTSearch}(R, x)$
4.2. If S is empty, return T
4.3. Otherwise, return S

BSTSearch complexity is $O(h)$ as a function of the three height h

For a perfect (or sufficiently balanced) tree, $n \propto 2^{h}$ so the complexity is $O(\log n)$ as a function of the tree size n

However, for a degenerate tree (a chain), $n=h+1$, so the complexity is $O(n)$

$O(\log n)$

Binary search tree

A binary tree T is a binary search tree (BST) iff

- it is empty (i.e., $T=\{ \}$), or
- it is given by $T=\{r\} \cup L \cup R$, where
- for all subtrees $S \subset L$, value $(S) \leq \operatorname{value}(T)$ and
- for all subtrees $S \subset R$, value $(S)>\operatorname{value}(T)$ and
- L and R are also BSTs

Note: this diagram shows the value of
the nodes instead of the node indices

BST search: example

Searching for the value 5

Steps:

1. 5 is less than 6 , so search left
2. 5 is larger than 3 , so search righ
3. 5 is found

BSTSearch(T, 5)

BSTSearch(T.L, 5)

BSTSearch(T.L.R, 5

Searching for the value 2
Steps:
2 is less than 6 , so search left
2. 2 is less than 3 , so search left again
3. 2 is larger than 1 , but there is no right child: stop

BSTSearch (T, 2)

BSTSearch(T.L, 2)

Building a BST

We can trivially build a BST T by adding a new element x a time
The process is similar to searching a BST, except that a new leaf node is added to the tree to contain the new value

However, this process is not guaranteed to return a tree which is perfect or even reasonably balanced

BSTInsert(N, x) :

- Precondition: N is a BST
- Postcondition: Returns the same BST N, extended with the new value x

1. If N is NIL then return $\{x$, NIL, NIL $\}$
2. If $x \leq N$. value then:
2.1. Set N. left \leftarrow BSTInsert $(N$. left, $x)$
3. Else:
3.1. Set N. right \leftarrow BSTInsert(N. right, x)
4. Return N

Representing a complete binary tree as an array

We can enumerate the elements of a complete tree from left to right and top to bottom, placing them in an array

The process can be inverted to reconstruct the complete tree unambiguously

Let i be the index of a given node in the array.
Then:

- $\operatorname{left}(i)=2 i+1$
- $\operatorname{right}(i)=2 i+2$
- $\operatorname{parent}(i)=\lfloor(i-1) / 2\rfloor$
- $\operatorname{empty}(i)=\delta_{\{i \geq|A|\}}$
- $\operatorname{value}(i)=A_{i}$

$$
x^{2}+2
$$

fatter

Complete binary trees

A binary tree is complete if all levels are full, except the last one which is partially filled from left to right

Complete

Perfect

Neither

Heaps

A binary tree T is a max heap iff:

- T is empty, or
- for all subtrees $S \subset T$, value $(S) \leq \operatorname{value}(T)$

Note: the definition may look similar to a BST, but it is very different; in particular, we do not distinguish between left and right children

By construction, the heap's root is always the node in the tree with largest value

A min heap is similar, but with smaller instead of larger elements towards the top

Maintaining the heap property: SiftUp \& SiftDown

We can "fix" a tree T which is a heap except for the value of subtree S, which is "defective"
$\operatorname{SiftUp}(S)$ is used to fix the tree if the value of S is too small

- It works by swapping the value of S with its parent until a suitable place in the tree is found
$\operatorname{SiftDown}(S)$ is used to fix the tree if the value of S is too large
- It works by swapping the value of S with the "largest" child until a suitable place in the tree is found

SiftUp(S):

- Precondition: S is a subtree of a binary tree T which already has the heap property, or the latter can be restored by reducing value (S)
- Postcondition: The tree T is the same as before, except that the subtree values have been permuted to satisfy the heap property

1. If empty $(\operatorname{parent}(S))$ return
2. If value $(\operatorname{parent}(S)) \geq \operatorname{value}(S)$ return
3. Swap the values of S and $\operatorname{parent}(S)$
4. Call recursively $\operatorname{SiftUp}(\operatorname{parent}(S))$

SiftUp: example

large

Building a heap: example
60

3	7	10	1	6

BuildHeap: complexity

Each call to $\operatorname{SiftDown}(S)$ is $O(i)$, where i is the height of the subtree S
If h is the height of the tree, there are 2^{h-i} subtrees of height i
The cost of calling SiftDown for level i is thus $O\left(i \cdot 2^{h-i}\right)$

The total cost of BuildHeap is obtained by summing over all levels:
$\sum_{i=0}^{h} i \cdot 2^{h-i}=2^{h+1}-h-2 \in O\left(2^{h}\right)$
Recall that $h \propto \log n$
Hence, BuildHeap complexity is $O(n)$

Heap sort

A heap can be used to sort an array

First, the array is transformed into a heap using BuildHeap
Then, the top (maximum) element is extracted and the heap property is restored calling SiftDown
Then, the top (now second largest) element is extracted, the heap property is restored, and so on
The cost is $O(n \log n)$, same as for MergeSort (could have it been better?)

HeapSort(A):

1. Call BuildHeap (A)
2. For $i=|A|-1, \ldots, 1$:
2.1. Swap elements A_{0} and A_{i}
2.2. Interpret the subarray $\left(A_{0}, \ldots, A_{i-1}\right)$ as a complete binary tree T and call $\operatorname{SiftDown}(T)$

Priority queues

We can use a heap to implement a priority queue with two operations:

- PriorityEnqueue (Q, x) to add an element x to the queue
- PriorityDequeue (Q) to extract the "highest priority" (largest) element from the queue

The queue Q is a data structure with fields

- Q.A preallocated array for storing elements
- Q.size number of elements in the queue

PriorityEnqueue (Q, x) :

1. Let $i \leftarrow Q$.size
2. Set $Q . A_{i} \leftarrow x$
3. Interpret $\left(Q . A_{0}, \ldots, Q . A_{i}\right)$ as a complete binary tree T and let S be the subtree rooted at A_{i}
4. Call $\operatorname{SiftUp}(S)$
5. Set Q. size $\leftarrow i+1$

PriorityDequeue (Q, x) :

1. Let $i \leftarrow Q$. size
2. Swap A_{0} and A_{i}
3. Interpret $\left(Q . A_{0}, \ldots, Q . A_{i-1}\right)$ as a complete binary tree T
4. Call $\operatorname{SiftDown}(T)$
5. Set Q. size $\leftarrow i-1$
6. Return A_{i}

PriorityEnqueue: example

PriorityDequeue: example

Hash tables as a generalisation of arrays

Arrays

- Map indices $\{0,1, \ldots, n-1\}$ to values $i \mapsto A_{i}$
- Allow fast $\Theta(1)$ access to any of the indices

However, we often wish to index data based on different types of indices

For example, in a dictionary we would index entries based on words, which are strings, not integers

Hash tables

- Map keys \mathscr{K} (e.g., ints, strings) to values $k \mapsto A_{k}$
- Allow fast $\Theta(1)$ access on average

Hence, a hash table generalises an array to keys other than consecutive integers

Hash table via chaining: example
ListFindPredecessor(Q, "Tim")

Hash tables via chaining

The simplest implementation of a hash table is a a linked list L containing a chain of key-value pairs $\langle k, v\rangle$

Complexity:

- Retrieving a key k requires scanning the entire list for a match, with worst case $\operatorname{cost} \Theta(n)$
- Inserting a new element $\langle k, v\rangle$ is $\Theta(1)$: just call ListInsertAfter (L, k, v)
- But, if the inserted key k can already exist, one needs to check first if the key is already present to avoid duplicates, with cost $\Theta(n)$
This is also the average case cost, as on average key k is found half-way through the list

ChainInsert (L, k, v) :

1. $N \leftarrow \operatorname{ListFindPredecessor}(L,\langle k, \star\rangle)$
2. If $N=$ NIL then:
2.1. Call ListInsertAfer $(L,\langle k, v\rangle$
3. Else:
3.1. set N. next . value $\leftarrow\langle k, v\rangle$

ChainRetrieve (L, k) :

1. $N \leftarrow$ ListFindPredecessor $(L,\langle k, \star\rangle)$
2. If $N=$ NIL then:
2.1. Return NIL
3. Else:
3.1. Return N. next. value. v

Multiple chains

We can significantly speed up access by using multiple, short chains

Each chain is tasked with storing a subset of keys
The hash table is a structure H with a single field:

- H.A an array of m chains L_{0}, \ldots, L_{m-1}

The load factor α is the average number of elements per chain
$\alpha=\frac{n}{m}$

We also require a hash function h mapping keys k to chains $s=h(k)$
$h: \mathscr{K} \rightarrow\{0,1, \ldots, m-1\}$
The cost of the hash function is independent of n and $m(\boldsymbol{\Theta}(1)$ complexity

Intuition

- We expect the cost of accessing an element in the hash table to be $O(\alpha)$ on average
- If so, and if the number of chains $m=\Omega(n)$ is proportional to the number of elements n added to the hash table, then the access cost is $O(1)$, the same as for an array

Building hash functions

75

Keys as integers
Any key k can always be thought of as a (large) natural number:

- Take the C bytes c_{i} used to represent the key in memory
- Interpret the key as the natural number:

$$
\sum_{i=0}^{C-1} c_{i} \cdot 256^{i}
$$

The division method
Define:
$h(k)=k \bmod m$
Thus $h(k)$ is the remainder of dividing k by m

- The remainder is always in the range 0 to $m-1$
- The remainder is relatively quick to compute
- Is the reminder uniformly distributed, and thus a good hash function?

Hash functions

Hash functions goals

The goals of a hash function h are:

- To map keys k to one of m slots
- To do so quickly $(\Theta(1)$ complexity for all keys)
- To do so uniformly, meaning that different keys can be expected to spread equally in different slots

Example for string keys

- k is a string encoded in ASCII
- Set $m=128$
- Set $h(k)$ to be the ASCII value of the first character

This satisfies some of the goals:
$\sqrt{ }$ Maps strings to $m=128$ slots
$\sqrt{ }$ Does so quickly (just read the first character)
X But the key distribution is generally not uniform because certain characters are much more frequent than others

Remainder method: choosing m

Criterion: we would like $h(k)$ to depend on all the bits of the binary representation of the number k
Choosing m to be a prime number achieves this
To show this, assume that k and k^{\prime} differ only by bit i, so that $k^{\prime}=k+2^{i}$
Then:
$h\left(k^{\prime}\right)-h(k)=\left(k^{\prime} \bmod m\right)-(k \bmod m)$
$=k^{\prime}-k \bmod m$
$=2^{i} \bmod m$
$\neq 0$
This shows that two keys that differ by a single bit have different hash value

Average cost analysis

In the worrst case, all keys are hashed to the same slot and insertion and retrieval of keys is $\Omega(n)$
Under suitable statistical assumptions, the average case is much better

Simple Uniform Hashing Assumption (SUHA)

- The keys k added to the hash table are selected i.i.d. at random
- All hash values are equally probable:
$P[h(k)=s]=1 / m$
for all $s \in[0, m-1]$

B16 Software Engineering
Algorithms and Data Structures 1
Part 4 of 4: Graphs
Dr Andrea Vedaldi
4 lectures, Hilary Term
For lecture notes, tutorial sheets, and updates see http://www.robots.ox.ac.uk/~vedaldi/teach.html

Average key retrieval cost

Theorem: missing key cost

Under the SUHA, the number of list elements visited in attempting to retrieve a key k that is not contained in a hash table H, averaged over all possible keys and tables, is $1+\alpha$

Proof (sketch

This is because the average length of chains is $\alpha=n / m$ if the n elements in the table spread uniformly to the m chains

Since the key is missing, the entire chain must be visited before giving up

Theorem: existing key cost

Under the SUHA, the number of list elements visited by retrieving a key k that is contained in a hash table H, averaged over all possible keys and tables, is $1+\alpha / 2-\alpha / 2 n$

Proof (sketch)
This proof, due to D. Knuth, is difficult and optional
Intuitively, if the key is present in the hash table, on average we need to visit only half a chain before finding it

Directed graphs

A directed graph $G=(V, E)$ is given by

- a set ot vertices $V=\left\{v_{1}, \ldots, v_{|V|}\right\}$ and
- a set of edges $E \subset V \times V$

An edge $\left(v_{i}, v_{j}\right) \in E$ is drawn as an arrow $v_{i} \rightarrow v_{j}$
Example

Weighted graph

A weighted graph (G, w) has weights $w(e) \in \mathbb{R}$ associated to the edges

Example

Path composition and subpaths

We can compose paths by concatenating them
Let:

- $p^{\prime}=\left(v_{1}, \ldots, v_{2}\right)$ connects v_{1} to v_{2}
- $p^{\prime \prime}=\left(v_{2}, \ldots, v_{3}\right)$ connects v_{2} to v_{3}

Note that the destination of p^{\prime} is the source of $p^{\prime \prime}$

Example

$p=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=\left(v_{1}, v_{2}, v_{3}\right) \oplus\left(v_{3}, v_{4}\right)$

It can be represented by a weighted adjacency matrix W where

- $W_{i j}=w\left(v_{i}, v_{j}\right)$ if $\left(v_{i}, v_{j}\right) \in E$
- $W_{i j}=\infty$ otherwise
$W=\left[\begin{array}{cccc}\infty & 3 & 6 & \infty \\ \infty & \infty & 2 & \infty \\ \infty & \infty & \infty & 2 \\ \infty & \infty & \infty & \infty\end{array}\right]$

A path in an directed graph is a sequence of vertices $p=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ such that $\left(v_{i}, v_{i+1}\right) \in E$
The path connects the source v_{1} to the destination v_{n}

The length of the path is the number of edges in it (i.e., the number of vertices minus 1)

In a weighed directed graph, the weight of a path is the sum of the edge weights:

$$
w(p)=\sum_{i=1}^{n-1} w\left(v_{i}, v_{i+1}\right)
$$

Example

- $p=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$
- length $(p)=3$
- $w(p)=7$

Cycles

A cycle is a path $p=\left(v_{1}, \ldots, v_{1}\right)$ where source and destination coincide
If $p=p^{\prime} \oplus p^{\prime \prime} \oplus p^{\prime \prime \prime}$, we say that $p^{\prime}, p^{\prime \prime}$ and $p^{\prime \prime \prime}$ are subpaths of path p

A negative cycle is a cycle whose weight is negative

Examples

$\left(v_{4}, v_{4}\right)$

Shortest paths

A path p connecting u to v is shortest if no path with a smaller weight also connects u to v

$w\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=7$
(shortest)

$w\left(v_{1}, v_{3}, v_{4}\right)=8$
(not shortest)

If there is a negative cycle, then a shortest path may not be defined

$w\left(v_{1}, v_{2}, v_{3}, v_{2}, v_{3}, \ldots, v_{3}, v_{4}\right)$
(arbitrarily short)

Shortest paths problems

Single-source shortest paths (SSSP)
Given an oriented weighted graph (G, w) and a source vertex u, find shortest paths to all vertices $v \in V$

All-pairs shortest paths (APSP)
Given an oriented weighted graph (G, w), find shortest paths between all pairs of vertices $u, v \in V$

Optimal substructure of shortest paths

Theorem

If p is a shortest path and $p^{\prime} \oplus p^{\prime \prime}=p$ are two subpaths, then p^{\prime} and $p^{\prime \prime}$ are also shortest paths

Representing shortest paths

The shortest paths $p_{u v}$ connecting all pair of vertices u to v can be encoded by using a predecessor matrix $P \in V^{|V| \times|V|}$ and a distance matrix $D \in\left(\mathbb{R}_{+} \cup\{\infty\}\right)^{|V| \times|V|}$ such that:

- $r=P_{u v}$ is the node before v in the path $p_{u v}$
- $D_{u v}=w\left(p_{u v}\right)$

Proof

- Let $p^{\prime}=(u, \ldots, r)$ and $p^{\prime \prime}=(r, \ldots, v)$
- By definition $w(p)=w\left(p^{\prime}\right)+w\left(p^{\prime \prime}\right)$
- If p^{\prime} is not shortest, then we can find a path q from u to r such that $w(q)<w\left(p^{\prime}\right)$
- Hence $q \oplus p^{\prime \prime}$ connects the same vertices as p and has smaller weight $w\left(q \oplus p^{\prime \prime}\right)<w(p)$
- Hence p is not a shortest path

To reconstruct the shortest paths, backtrack:

- Start with u and v so the path is (u, \ldots, v)
- Let $r=P_{u v} \quad$ so the path is (u, \ldots, r, v)
- Let $t=P_{u r} \quad$ so the path is (u, \ldots, t, r, v)
- etc.

Bellman-Ford SSSP

The Bellman-Ford algorithm computes the shortest paths p_{v} from a fixed source u to all vertices v
It works incrementally, by establishing all shortest paths of length 1 , then of length 2 and so on
Note: We assume for simplicity that there are no negative cycles, but the algorithm can be modified to detect such cycles
Complexity: $O(|V| \cdot|E|)$ or $O\left(|V|^{3}\right)$ for dense graphs

Bellman-Ford: correctness

BellmanFord (V, E, w, u)

1. For all v in V :
1.1. Let $D_{v} \leftarrow 0$ if $v=u$ or ∞ otherwise
1.2. Let $P_{v} \leftarrow u$ if $v=u$ or -1 otherwise
2. Repeat $|V|-1$ times:
2.1. For all $(r, v) \in E$
2.1.1. Call $\operatorname{Relax}(D, P, w, r, v)$
3. Return D and P

Path relaxation

Let p_{v} the current path (not necessarily shortest) from u to v
Let $(r, v) \in E$ be an edge with head v and let p_{r} be the current path from u to r
The Relax routine replaces p_{v} with $p_{r} \oplus(r, v)$ if the latter is shorter:
$\operatorname{Relax}(D, P, w, r, v)$

1. If $D_{r}+w(r, v)<D_{v}$:
1.1. Set $D_{v} \leftarrow D_{r}+w(r, v)$
1.2. Set $P_{v} \leftarrow r$
1.3. Return true
2. Return false

Theorem: After k iterations, the Bellman-Ford algorithm has established all shortest paths of length at most k (and so all shortest paths after $|V|-1$ iterations).

Proof (by induction)

- Suppose that the theorem is true for k iterations
- A shortest path p of length $k+1$ can bee written as $p=(u, \ldots, r, v)$ where, due to the optimal substructure, $p^{\prime}=(u, \ldots, r)$ is a shortest path of length k, hence already established
- When (r, v) is relaxed during iteration $k+1$, a path $p_{u v}$ from u to v at least as good as p is established
shortest path p_{v}

length $k+1$ =

length k

Floyd-Warshall APSP

The Floyd-Warshall algorithm computes paths $p_{u v}$ between all pairs of vertices u and v

It does so incrementally, by establishing all shortest paths with no intermediate nodes (direct edges), then all shortest paths with intermediate notes in the set $\{1\}$, then in the set $\{1,2\}$ and so on
Complexity: $O\left(|V|^{3}\right)$ for sparse or dense graphs

FloydWarshall (V, E, w) :

1. For all u, v in V :
1.1. Let $D_{u v} \leftarrow w(u, v)$ if $(u, v) \in E$ or ∞ otherwise
1.2. Let $P_{u v} \leftarrow u$ if $(u, v) \in E$ or -1 otherwise
2. For all r in V :
2.1. For all u in V :
2.1.1. For all v in V :
2.1.1.1. Call $\operatorname{RelaxFW}(D, P, r, u, v)$
3. Return D and P

Path relaxation (Floyd-Warshall variant)

Let $p_{u v}$ the current path (not necessarily shortest) from u to v
Let $r \in V$ be an intermediate vertex and let $p_{u r}$ and $p_{r v}$ be the current paths from u to r and from r to v
The RelaxFW routine replaces $p_{u v}$ with $p_{u r} \oplus p_{r v}$ if the latter is shorter:
$\operatorname{RelaxFW}(D, P, r, u, v)$:

1. If $D_{u r}+D_{r v}<D_{u v}$:
1.1. Set $D_{u v} \leftarrow D_{u r}+D_{r v}$
1.2. Set $P_{u v} \leftarrow P_{r v}$

\square

Dijkstra's SSSP algorithm

The Dijkstra algorithm solves the SSSP problem under the assumptions that there are no negative weights

It establishes the shortest paths p_{v} from a source u in order of non-decreasing weight

To do so, it maintains a set Q of "open" vertices for which a shortest path has not yet been established, closing one more vertex at each iteration

Complexity: The naïve implementation of this algorithm shown to the right is $O\left(|V|^{3}\right)$
$\operatorname{Dijkstra}(V, E, w, u)$:

1. For all v in V :
1.1. Let $D_{v} \leftarrow 0$ if $v=u$ or ∞ otherwise
1.2. Let $P_{v} \leftarrow-1$
2. Set $Q \leftarrow V$
3. Repeat until Q is not empty:
3.1. Let $v^{*} \leftarrow \operatorname{argmin} D_{v}$
3.2. Remove v^{*} from Q
3.3. For all $v \in Q$ such that $\left(v^{*}, v\right) \in E$
3.3.1. Call $\operatorname{Relax}\left(D, P, w, v^{*}, v\right)$
4. Return D and P

Floyd-Warshall: correctness

Theorem: After r iterations, the Floyd-Warshall

 algorithm has established all shortest paths whose intermediate vertices are within the set $\{1, \ldots, r\}$ (and so all shortest paths in $|V|$ iterations).Proof (by induction)
shortest path with intermediate vertices in $\{1, \ldots, r+1\}$

- Suppose that the theorem is true for r iterations
- A (simple) shortest path p whose intermediate vertices are within $\{1, \ldots, r+1\}$ and that contains vertex $r+1$ can be written as $p=(u, \ldots, r+1, \ldots, v)$
- The intermediate vertices of shortest paths $p^{\prime}=(u, \ldots, r+1)$ and $p^{\prime \prime}=(r+1, \ldots, v)$ are in $\{1, \ldots, r\}$, so p^{\prime} and $p^{\prime \prime}$ have already been established
- When $(r+1, u, v)$ is relaxed during iteration $r+1$, a path $p_{u v}$ from u to v at least as good as the shortest path p is established

shortest paths with intermediate vertices in $\{1, \ldots, r\}$

Dijkstra's SSSP algorithm: the invariants

The algorithm maintains the following invariant:
(P1) For all closed vertices $r \in V-Q, p_{r}$ is a shortest path
(P2) For all open vertices $v \in Q$, the vector D is given by $D_{v}=\min _{r \in Q-V} D_{r}+w(r, v)$

Why the algorithm finds a shortest path

We have:

- $D_{v}=\min _{r \in Q-V} D_{r}+w(r, v) \quad$ (invariant $(\mathrm{P} 2)$)
- $v^{*} \leftarrow \operatorname{argmin}_{v \in Q} D_{v} \quad$ (calculation of v^{*})
- $D_{v}=w\left(p_{v}\right)$
(definition of D)
By composing argmin and min, the newly determined path is $p_{v^{*}}=p_{r^{*}} \oplus\left(r^{*}, v^{*}\right)$, where
$\left(r^{*}, \nu^{*}\right)=\operatorname{argmin}_{r \in Q-V, v \in Q} w\left(p_{r}\right)+w(r, v)$
Any other path from u to v^{*} is of the form
$q=(u, \ldots, r) \oplus(r, v) \oplus\left(v, \ldots, v^{*}\right)$ where r is closed and v is open.

Hence, $p_{v^{*}}$ is indeed shortest:

$w(q) \geq w(u, \ldots, r)+w(r, v) \geq w\left(p_{r^{*}}\right)+\left(r^{*}, v^{*}\right)=w\left(p_{v^{*}}\right)$

Dijkstra's algorithm with a priority queue

DijkstraPriority (V, E, w, u) :

1. For all v in V :
1.1. Let $D_{v} \leftarrow 0$ if $v=u$ or ∞ otherwise
1.2. Let $P_{v} \leftarrow-1$
2. Let $Q \leftarrow\{(0, u)\}$ be a min-priority queue.
3. Repeat until Q is not empty:
3.1. Let $\left(d^{*}, v^{*}\right) \leftarrow$ PriorityDequeue (Q).
3.2. For all $v \in Q$ such that $\left(v^{*}, v\right) \in E$:
3.2.1. If calling $\operatorname{Relax}\left(D, P, w, v^{*}, v\right)$ returns true, then call
PriorityEnqueue $\left(Q,\left(D_{v^{*}}+w\left(v^{*}, v\right), v\right)\right)$.
4. Return D and P

Dijkstra's algorithm with a priority queue

$\operatorname{Dijkstra}(V, E, w, u):$

1. For all v in V :
1.1. Let $D_{v} \leftarrow 0$ if $v=u$ or ∞ otherwise
1.2. Let $P_{v} \leftarrow-1$
2. Set $Q \leftarrow V$
3. Repeat until Q is not empty: \qquad
\qquad
3.2. Remove v^{*} from Q
3.3. For all $v \in Q$ such that $\left(v^{*}, v\right) \in E$
3.3.1. Call $\operatorname{Relax}\left(D, P, w, v^{*}, v\right)$
4. Return D and P
$\operatorname{DijkstraPriority}(V, E, w, u)$:
5. For all v in V :
1.1. Let $D_{v} \leftarrow 0$ if $v=u$ or ∞ otherwise
1.2. Let $P_{v} \leftarrow-1$
6. Let $Q \leftarrow\{(0, u)\}$ be a min-priority queue. 3. Repeat until Q is not empty:
3.1. Let $\left(d^{*}, v^{*}\right) \leftarrow \operatorname{PriorityDequeue~}(Q)$.
3.2. For all $v \in Q$ such that $\left(v^{*}, v\right) \in E$:
3.2.1. If calling $\operatorname{Relax}\left(D, P, w, v^{*}, v\right)$ returns true, then call
PriorityEnqueue $\left(Q,\left(D_{v^{*}}+w\left(v^{*}, v\right), v\right)\right)$.
7. Return D and P

Conclusions

Key concepts
We have covered:

- Recap of problems, algorithms, complexity
- Lower bound on sorting complexity
- Array, stacks, queues, linked lists
- Binary trees, binary search trees
- Heaps, priority queues
- Hash functions and hashing
- Graphs and shortest paths

Hints
Practice: try implementing and testing algorithms "for real". Use C++ for this course, or any other programming language in general (e.g., Python)

The exercises mostly ask you to write and test algorithms in $\mathrm{C}++$

Use the provided example code, especially for the exercises

Use the notes as needed: they contain several details that can help you to understand the content more firmly

