
B16 Software Engineering
Algorithms and Data Structures 1
Lecture 1 of 4: Recap on complexity, quasilinear and linear sort,
elementary data structures (arrays, stacks, queues, linked lists)

Dr Andrea Vedaldi
4 lectures, Hilary Term

For lecture notes, tutorial sheets, and updates see
http://www.robots.ox.ac.uk/~vedaldi/teach.html

Module content & resources 2

Learning objectives

• Elementary data structures:
arrays, stacks, queues, linked
lists

• Binary Trees

• Binary Search Trees

• Heaps

• Priority Queues

• Hashing

• Graphs

• Shortest paths

Materials

Slides, Notes, and Examples

• https://www.robots.ox.ac.uk/
~vedaldi/teach.html

Source code for the Examples

• https://github.com/vedaldi/
b16-code

Feedback Form

Reference text

Introduction to Algorithms, 3rd
Edition. Cormen, Leiserson,
Rivest, Stein. McGraw-Hill,
1990.

B16 Software Engineering
Algorithms and Data Structures 1
Part 1 of 4: Recap on complexity, quasilinear and linear sort,
elementary data structures (arrays, stacks, queues, linked lists)

Dr Andrea Vedaldi
4 lectures, Hilary Term

For lecture notes, tutorial sheets, and updates see
http://www.robots.ox.ac.uk/~vedaldi/teach.html

Problem
A problem is a description of the input

data, the output data, and the relationship
between them.

Algorithm
An algorithm is a description of certain

computational steps that generate the output
data from the input data, thus solving the

problem.

4

Sorting problem [revision] 5

Problem definition

• Input: A sequence

• Output: The same sequence, but permuted so
that

Problem instance

• Input:	

• Output:	

A = (A0, A1, …, An−1)

Ai−1 ≤ Ai for i = 1,…, n − 1

A = (5,4,3,2,1)

A = (1,2,3,4,5)

Merge Sort [revision] 6

:

• Precondition: is an array

• Postcondition: has the same element as before, but
permuted in non-decreasing order

1. If , return
2. Let
3. Let

4. Let

5. Call
6. Call
7. Set  

:

• Precondition: arrays and are sorted

• Postcondition: return an array which is the non-decreasing
union of arrays and

1. Let and
2. Reserve space for a sequence of elements
3. While and :

3.1. If :

3.1.1. Set and

3.2. Else:
3.2.1. Set and

4. While :
4.1. Set and

5. While :
5.1. Set and

6. Return

MergeSort(A)
A
A

|A | = 1
i ← ⌊ |A | /2⌋
B ← (A0, …, Ai−1)
C ← (Ai, …, A|A|−1)
MergeSort(B)
MergeSort(C)
A ← Merge(B, C)

Merge(B, C)
B C

A
B C

i ← 0 j ← 0
A |B | + |C |

i < |B | j < |C |
Bi ≤ Cj

Ai+j ← Bi i ← i + 1

Ai+j ← Cj j ← j + 1

i < |B |
Ai+j ← Bi i ← i + 1

j < |C |
Ai+j ← Cj j ← j + 1

A

Merge Sort: example [revision] 7

2 7 6 3 5 8 4 1

2 7 6 3 5 8 4 1

2 7 6 3 5 8 4 1

2 7 6 3 5 8 4 1

divide merge

2 7 6 3 5 8 4 1

81 2 3 4 5 6 7

2 3 6 7 1 4 5 8

2 7 3 6 5 8 1 4

Complexity [revision] 8

The goal of complexity is to analyse the speed of
an algorithm

Let be a parameter characterising the size of
the input

We study the number of computational steps
 that an algorithm requires to solve the problem

Worst-case complexity

 is the largest possible number of steps to solve
any problem instance of size

Average-case complexity

 is the average possible number of steps to solve
“random” problem instances of size

This requires defining a probability distribution
over problem instances

n

f(n)

f(n)
n

f(n)
n

Complexity [revision] 9

Big-O notation

We say that is Big-O of iff there are
constant such that

Big- notation

We say that is Big- of iff there are
constant such that

Big- notation

We say that if Big- of iff it is
simultaneously Big-O and Big- of

f(n) g(n)
n0, a

∀n ≥ n0 : f(n) ≤ ag(n)

Ω

f(n) Ω g(n)
n0, a

∀n ≥ n0 : f(n) ≥ ag(n)

Θ

f(n) Θ g(n)
Ω g(n)

f(n) = n2 + cos(4πn) + 1

g(n) ≤ f(n) ≤
3
2

g(n)

g(n) = n2

Merge Sort: work done [revision] 10

1 sequence of size 8

2 sequences of size 4

4 sequences of size 2

8 sequences of size 1

1 × 8

2 × 4

4 × 2

divide & merge

8 x 1

total work

8

8

8

8

log2 n

n

O(n log n)

Merge Sort: complexity [revision] 11

Recurrence relation

Merge Sort called on a sequence of length :

• Calls itself recursively on sequences of size

• Merges the resulting sorted subsequences in
steps

The total number of steps is thus given by the
following recurrence relation:

•

•

Solution of the recurrence relation

The solution of of the recurrence equations is

	

(homework: verify this expression)

Conclusion: Merge Sort is

n = |A |

n/2

n

f(n) = 2f(n/2) + n

f(1) = 1

f(n) = n(log2 n + 1)

O(n log n)

How fast can you sort? 12

Sorting using comparisons

Algorithm only observes the input sequence
by the results of pairwise comparisons

It then outputs a permutation of the sequence
which sorts it

A counting argument

There are possible permutations of the
sequence

As varies, the algorithm must eventually
output different permutations

If performs only comparisons, it can only
output possible permutations

Hence, we must have

𝒮(A) A
Ai < Aj

A

n! A
(1, 2, …, n)

A 𝒮(A)
n!

𝒮(A) t
2t

2t ≥ n!

How fast can you sort? 13

A counting argument (/ctd)

We thus have the following bound:

Hence:

	

Lower bound on complexity

No sorting algorithm based on pairwise
comparisons can be faster than

2f(n) ≥ n! = n(n − 1)⋯(n/2)

n/2 terms

(n/2 − 1)⋯2 ⋅ 1 ≥ (n
2)

n
2

f(n) ≥
n
2

log2
n
2

⇒ f(n) ∈ Ω(n log n)

Ω(n log n)

Sorting faster than n log n 14

Sorting faster is possible under additional assumptions. For example:

Assumption: the input sequence consists of natural numbers in the range 0 to

:

1. Allocate an array with elements initialised to 0
2. For :

2.1. Set

3. Let and
4. While :

4.1. If , then set and continue with line 4

4.2. Set

4.3. Set

4.4. Set

A Ai k − 1

CountingSort(A, k)

C k
i = 0,…, |A | − 1

CAi
← CAi

+ 1

i ← 0 j ← 0
j < k
Cj = 0 j ← j + 1

Ai ← j
Cj ← Cj − 1

i ← i + 1

⏟ stepsn

 stepsk

Complexity: Θ(n + k)
 at most timesk

 at most timesn

Data structures 15

A data structure is a container that arranges data
in such a way that certain operations can be
implemented efficiently

Today we will look at:

• Arrays

• Stacks

• Queues

• Linked lists

In the rest off the course we will look at:

• Binary trees

• Heaps

• Priority queues

• Hashes

• Graphs

Arrays 16

An array is a map from indices to
elements that allows fast access to any of
the elements

This means that reading or writing any element
is a operation

Typical implementation of an array

An array is implemented by storing elements at
equally-spaced memory locations

Then the address of element is computed in
time as for any value of the index

In a RAM machine, accessing an element by its
address is a operation

A 0,…, n − 1
A0, …, An−1

Ai
Θ(1) Ai Θ(1)

𝚋𝚊𝚜𝚎 + i 𝚜𝚝𝚛𝚒𝚍𝚎 i

Θ(1)

A0 A1 A2 A3 A4

stridebase

Memory

Array insert 17

While random access with an array is fast, other operations such as inserting a new element at an arbitrary
position are not

:

• Precondition: An array , a new value
and an index

• Postcondition: The array is . 

1. For :
1.1. Set

2. Set  

The complexity is (why?)

ArrayInsert(A, i, x)
A = (A0, …, An−1) x

i
(A0, …, Ai−1, x, Ai, …, An−1)

j = n, …, i + 1
Aj ← Aj−1

Ai ← x

O(n)

A0 A1 A2 A3 A4

Example: ArrayInsert(A, x,2)

A0 A1 A2 A3 A4 A4

A0 A1 A2 A3 A3 A4

A0 A1 A2 A2 A3 A4

A0 A1 x A2 A3 A4

Array Insert: C++ implementation 18

#ifndef __array__
#define __array__

#include <vector>

template <typename T>
void array_insert(std::vector<T>& A, size_t index, const T& x)
{
 assert(index <= A.size());
 if (index == A.size()) {
 A.push_back(x);
 } else {
 auto i = A.size();
 A.push_back(A[i - 1]);
 for (--i; i > index; --i) {
 A[i] = A[i - 1];
 }
 A[index] = x;
 }
}

#endif // __array__

template allows generic type T for the elements (int, string, …)

array implemented as a std::vector

for debugging: raise an error if called with an illegal index
special case: insert the element as last

Try the code for yourself ! 19

The course source code for the lectures and examples is available here

https://github.com/vedaldi/b16-code

First, fork the B16 code repository 20

Create a GitHub user (optionally enrol in GitHub Education) and log in

Go to https://github.com/vedaldi/b16-code

Select Fork > + Create a new fork

Second, start a GitHub Codespace 21

Select Code > Create codespace on main

Edit the code using VS Code in the virtual machine 22

Select B16-Code > part-1 > array.hpp

Build any of the provided programs (but the exercises are incomplete) 23

Press [All] next to Build at the bottom of the screen and select [array_driver]

Press Build

You can now execute the program 24

Press the ▶ button and select [array_driver]

This will run the code in a terminal, which allows you to see the output

You can debug the program 25

Add a breakpoint to the code by clicking to the left of any line number

Press the debug button in the bottom bar

You can step through the code and observe the variables 26

Use the Variables watch to observe the variables

Use the stepping controls to execute one line of the program at a time

Once you are done, do not forget to stop the codespace 27

Codespace can only be used for 60 hours per month (90 with the Education account)

Go to https://github.com/codespaces

Select … > Stop codespace

Stacks 28

A stack is a sequence of elements that allow fast
storage and retrieval at one end

Also known as a LIFO (last in, first out) data structure

This means that there are two efficient operations:

1. Pushing a new element on the “top” of

2. Popping the element at the “top” of

S

Θ(1)

x S

S

push pop

stack

Stack push and pop 29

We implement a stack via a structure with fields:

• a pre-allocated array with space for elements

• the index pointing to the head of the stack

:
1. Set

2. Set

:
1. Set
2. Return

S

S . A n

S . i

StackPush(S, x)
S . AS.i ← x
S . i ← S . i + 1

StackPop(S)
S . i ← S . i − 1

S . AS.i

i

S

3S

i StackPush(S,3)

3 7

i

S

StackPush(S,7)

3 7 4

i

S

StackPush(S,4)

3 7

i

S

StackPop(S) → 4

3

i

S

StackPop(S) → 7

i

S

StackPop(S) → 3

Queues 30

A queue is a sequence of elements that allows
quickly adding elements from one end and
removing them from the other

A queue is also known as a FIFO (first in, first out)
data structure

This means that there are two efficient
operations:

1. Enqueuing a new element at the back of

2. Dequeuing the element at the front of

Q Θ(1)

x Q

Q

Enqueue Dequeue

Back of the queue Front of the queue

Enqueue and dequeue 31

We implement a queue via a structure with fields:

• 	 a pre-allocated array

• 	 index of predecessor of the queue back

• 	 number of enqueued elements

We arrange the array in a ring buffer, storing
elements in a “circular” manner

:
1.

2.
3.
4. If :

4.1.  

:
1. Let
2. If :

2.1. Set
3. Set
4. Return

Q

Q . A

Q . i

Q . n

A

Enqueue(Q, x)
Q . Ai ← x
Q . n ← Q . n + 1
Q . i ← |A | − 1

Q . i = 0
Q . i ← Q . i − 1

Dequeue(Q)
j ← Q . i + Q . n

j ≥ |Q . A |
j ← j − |Q . A |

Q . n ← Q . n − 1
Q . Aj

Queue: logical implementation using an infinite buffer 32

n = 0

i, i + n = 0

3Enqueue(Q, 3) n = 1

i + n = 0i = − 1

34Enqueue(Q, 4) n = 2

i + n = 0i = − 2

31 4Enqueue(Q, 1) n = 3

i = − 3 i + n = 0

1 4Dequeue(Q) → 3 n = 2

i = − 2 i + n = − 1

Queue: “physical” implementation using a ring buffer 33

i = |A | − 1i = 0

repetition repetitionrepetition repetitionA (ring buffer)

Ring buffer 34

A (ring buffer)repetition repetition

7

repetition repetition

0 1 2 3 4-5 -4 -3 -2 -1 5 6 7 8 9-7 -6-8-9 10 11 12

Ring buffer 35

repetition repetitionrepetition repetition

-5

-4

-3-2

-1

5

6

78

9-6

-7 -8

-9

10

11

12

0

1

23

4

A (ring buffer)

The ring buffer views a finite
array as an infinite one

This works correctly as long as
the part of the infinite array
which is utilised is contiguous
and of size at most

A

|A |

Queue: extended example using a ring buffer 36

i, i + n

A n = 0

3A n = 1

i = 4i + n − |A | Enqueue(Q, 3)

3 4

i

A n = 2

i + n − |A | Enqueue(Q, 4)

3 1 4A n = 3

ii + n − |A | Enqueue(Q,1)

3 1 4A n = 2

i i + n Dequeue(Q) → 3

3 1 4A n = 1

i i + n Dequeue(Q) → 4

3 7 1 4A n = 2

i i + n Enqueue(Q, 7)

3 8 7 1 4A n = 3

i i + n Enqueue(Q, 8)

4 8 7 1 4

i

A n = 4

i + n − |A | Enqueue(Q, 4)

3 8 7 1 5A n = 5

i + n − |A | , i Enqueue(Q, 5)

3 8 7 1 4A n = 4

ii + n − |A | Dequeue(Q) → 1

Linked lists 37

A linked list represents a sequence of elements,
similarly to an array

Differently from an array, a linked list does not
support fast random access to its element, but can
significantly accelerate other operations such as
insertion

The linked list is given by a chain of nodes

Each node is a structure with fields:

• 	value associated to the node

• 	 next node in the chain

We use a fake sentinel node as a “pointer” to the
first element in the list

L N

N

N . value

N . next

next
NA

next
value

sentinel

next
value

next
value

next
value

next
value

∅

value

first element last element

Linked lists: insertion 38

Inserting a new node in a linked list is done in time via simple pointer operations

1. Create a new node
2. Set
3. Set
4. Set

Θ(1)

ListInsertAfter(Q, x) :
N

N . next ← Q . next
N . value ← x
Q . next ← N

sentinel

next
NA

next
value

next
value

next
value

next
value

next
value

∅

value

next

Q

N x

Linked lists: removal 39

 is similar to , and is left as an exerciseListRemoveAfter(Q) ListInsertAfter(Q)

next
NA

sentinel

next
value

next
value

next
value

next
value

next
value

∅

value

removedQ

Linked lists: value-based search 40

Searching for a node with a given value requires scanning the list in time

1. While and are not :

1.1. If return
1.2. Set

2. Return

O(n)

ListFindPredecessor(Q, x) :
Q Q . next 𝙽𝙸𝙻
Q . next . value = x Q

Q ← Q . next
𝙽𝙸𝙻

ListFindPredecessor(Q,7)

sentinel
next
NA

next
100

next
4

next
7

next
88

next
2

∅

6

Q Q . next

next
NA

next
100

next
4

next
7

next
88

next
2

∅

6

Q Q . next

next
NA

next
100

next
4

next
7

next
88

next
2

∅

6

Q Q . next

B16 Software Engineering
Algorithms and Data Structures 1
Part 2 of 4: Binary tree and heaps

Dr Andrea Vedaldi
4 lectures, Hilary Term

For lecture notes, tutorial sheets, and updates see
http://www.robots.ox.ac.uk/~vedaldi/teach.html

Binary trees 42

Informally, a binary tree is a collection of nodes,
each of which can have a left child and a right child, without loops

v0

v1 v4

v2 v3

root node

leaf node

node
no loops

rightleft

Binary trees: formal definition 43

A binary tree is a finite set such that:

• is the empty set, or

• is the union of three disjoint sets:

• the root

• the left child , which is also a binary tree

• the right child , which is also a binary tree

T

T = {}

T = {r} ∪ L ∪ R
{r}

L
R

{v0} ∪ ⋅ ∪ ⋅

{v4} ∪ ⋅ ∪ ⋅

{} {}

{v1} ∪ ⋅ ∪ ⋅

{v2} ∪ ⋅ ∪ ⋅

{} {}

{v3} ∪ ⋅ ∪ ⋅

{} {}

v0

v1 v4

v2 v3

T = {v0} ∪ ({v1} ∪
({v2} ∪ {} ∪ {}) ∪
({v3} ∪ {} ∪ {})) ∪

({v4} ∪ {} ∪ {}})

= =

Height of a binary tree 44

The height of a binary tree is the number of links from the root to the deepest leaf

Formally:

h(T)

h(T) = {1 + max{h(L), h(R)}, if T = {r} ∪ L ∪ R
−1, if T = {}

h = 0 h = 0

h = 0 v4

v2 v3

h = − 1 {} {}

v1 v4

v2 v3

h = 1

v0

v1 v4

v2 v3

h = 2

Perfect binary tree 45

A binary tree is perfect if any of the following two equivalent conditions is satisfied:

1. It has a maximal number of nodes for its height

2. It has nodes

h

2h+1 − 1

v0

v1 v4

v2 v3

Not perfect

v0

v1 v4

v2 v3 v5 v6

Perfect

2h − 1 2h − 1

2 ⋅ (2h − 1) + 1 = 2h+1 − 1

h − 1

h

Implementing a binary tree 46

Operations

If is a binary tree, the following operations are
defined:

• returns the left child of tree

• returns the right child of tree

• tells whether the tree is empty or not

• returns the value (data) associated to the
root of tree

We can express many algorithm based only on
these four operations!

Canonical representation

A binary tree can be represented by an object
which is either:

• The null object (to represent an empty tree)

• A data structure with fields:

• 	 the left child object

• 	 the right child object

• 	 the node’s value

In this case, the four operations are simply:

•

•

•

•

T

left(T) T

right(T) T

empty(T) T

value(T)
T

N

𝙽𝙸𝙻

N . left
N . right
N . value

left(N) = N . left
right(N) = N . right
empty(N) = δ{N=𝙽𝙸𝙻}

value(N) = N . value

Computing the height of a binary tree 47

The formula for the height of a binary tree

translates directly into a recursive algorithm:

:
1. If :

1.1. Return the value
2. Let
3. Let
4. Let

5. Let

6. Return

The complexity is , because the algorithm visits
each node once

A note on encapsulation:

• This algorithm is agnostic on the choice of a
representation for the binary tree

• Instead, it only requires the functions ,
and to be defined

h(T) = {1 + max{h(L), h(R)}, if T = {r} ∪ L ∪ R
−1, if T = {}

BinaryTreeHeight(T)
empty(T)

−1
L ← left(T)
R ← right(T)
hL ← BinaryTreeHeight(L)
hR ← BinaryTreeHeight(R)

1 + max{hL, hR}

O(n)

empty left
right

Depth-first traversal of a binary tree 48

Traversing a tree means visiting and processing all the
nodes once in a certain order

Depth-first traversal starts from the root and visits
recursively the left and right children

:
1. If :

1.1. Return
2. Process // pre-order processing
3. Let
4. Let
5. Let
6. Process // in-order processing
7. Let
8. Process // post-order processing

DFTraversal(T)
empty(T)

value(T)
L ← left(T)
R ← right(T)
DFTraversal(L)

value(T)
DFTraversal(R)

value(T)

Depth-first visit order	
Pre-order 	 processing order 	
In-order 	 processing order	
Post-order	 processing order	

v0, v1, v2, v3, v4
v0, v1, v2, v3, v4
v2, v1, v3, v0, v4
v2, v3, v1, v4, v0

v0

v1 v4

v2 v3

Breadth-first traversal of a binary tree 49

Breadth-first traversal visits the nodes layer by
layer, using a queue to remember which subtree to
visit next

:

• Precondition: the queue contains the tree as
sole element

1. While is not empty:
1.1. Let
1.2. Process
1.3. Let
1.4. Let
1.5. If not :

1.5.1.
1.6. If not :

1.6.1.

BFTraversal(Q)
Q = {T}

Q
T ← Dequeue(Q)

value(T)
L ← left(T)
R ← right(T)

empty(L)
Enqueue(Q, L)

empty(R)
Enqueue(Q, R)

Breadth-first visit/process order:
v0, v1, v4, v2, v3

v0

v1 v4

v2 v3

A binary tree is a binary search tree (BST) iff

• it is empty (i.e.,), or

• it is given by , where

• for all subtrees , and

• for all subtrees , and

• and are also BSTs

T

T = {}

T = {r} ∪ L ∪ R
S ⊂ L value(S) ≤ value(T)
S ⊂ R value(S) > value(T)

L R

Binary search tree 50

6

3 8

2 5

2,3,5 ≤ 6 8 > 6

2 ≤ 3 5 > 3

Note: this diagram shows the value of
the nodes instead of the node indices

Searching a BST 51

Searching a BST for a value is done by
descending from the root to a leaf, “turning” left or
right depending on value comparisons

1. If or , then return
2. Otherwise, let
3. If :

3.1. Return
4. Else:

4.1. Let
4.2. If is empty, return
4.3. Otherwise, return  

BSTSearch complexity is as a function of the
three height

For a perfect (or sufficiently balanced) tree, so
the complexity is as a function of the tree
size

However, for a degenerate tree (a chain), ,
so the complexity is

T x

BSTSearch(T, x) :
empty(T) value(T) = x T

T = {r} ∪ L ∪ R
x < value(T)

BSTSearch(L, x)

S ← BSTSearch(R, x)
S T

S

O(h)
h

n ∝ 2h

O(log n)
n

n = h + 1
O(n)

6

3 8

2 5

8

6

25

23

2

 👎O(n) 👍O(log n)

BST search: example 52

Searching for the value 5

Steps:
1. 5 is less than 6, so search left
2. 5 is larger than 3, so search right
3. 5 is found  

Searching for the value 2

Steps:
1. 2 is less than 6, so search left
2. 2 is less than 3, so search left again
3. 2 is larger than 1, but there is no right child: stop

6

3 8

1 5

BSTSearch(T, 5)

BSTSearch(T.L, 5)

BSTSearch(T.L.R, 5)

8

6

3

1 5

BSTSearch(T, 2)

BSTSearch(T.L, 2)

BSTSearch(T.L.L, 2)

Building a BST 53

We can trivially build a BST by adding a new
element a time

The process is similar to searching a BST, except
that a new leaf node is added to the tree to contain
the new value

However, this process is not guaranteed to return a
tree which is perfect or even reasonably balanced

• Precondition: is a BST

• Postcondition: Returns the same BST , extended with
the new value

1. If is then return
2. If then:

2.1. Set
3. Else:

3.1. Set
4. Return

T
x

BSTInsert(N, x) :
N

N
x

N 𝙽𝙸𝙻 {x, 𝙽𝙸𝙻, 𝙽𝙸𝙻}
x ≤ N . value

N . left ← BSTInsert(N . left, x)

N . right ← BSTInsert(N . right, x)
N

Complete binary trees 54

A binary tree is complete if all levels are full, except the last one which is partially filled from left to right

6

3 8

1 5

6

3 8

1 5 1 5

6

3 8

5

Complete Perfect Neither

Representing a complete binary tree as an array 55

We can enumerate the elements of a complete
tree from left to right and top to bottom,
placing them in an array

The process can be inverted to reconstruct the
complete tree unambiguously

Let be the index of a given node in the array.
Then:

•

•

•

•

•

i

left(i) = 2i + 1

right(i) = 2i + 2

parent(i) = ⌊(i − 1)/2⌋

empty(i) = δ{i≥|A|}

value(i) = Ai

6

3 8

1 5

6 3 8 1 5
0 1 2 3 4 5 6 7

flatten unflatten

i = 1

parent(i) = ⌊(i − 1)/2⌋ = 0

left(i) = 2i + 1 = 3 right(i) = 2i + 2 = 4

Heaps 56

A binary tree is a max heap iff:

• is empty, or

• for all subtrees ,

Note: the definition may look similar to a BST, but
it is very different; in particular, we do not
distinguish between left and right children

By construction, the heap’s root is always the node
in the tree with largest value

A min heap is similar, but with smaller instead of
larger elements towards the top

T

T

S ⊂ T value(S) ≤ value(T)
15

10 7

6 3

3,6,7,10 ≤ 15

3,6 ≤ 10

Maintaining the heap property: SiftUp & SiftDown 57

We can “fix” a tree which is a heap except for the
value of subtree , which is “defective”

 is used to fix the tree if the value of is
too small

• It works by swapping the value of with its
parent until a suitable place in the tree is found

 is used to fix the tree if the value of is
too large

• It works by swapping the value of with the
“largest” child until a suitable place in the tree is
found

:

• Precondition: is a subtree of a binary tree which
already has the heap property, or the latter can be restored
by reducing

• Postcondition: The tree is the same as before, except
that the subtree values have been permuted to satisfy the
heap property

1. If return
2. If return
3. Swap the values of and
4. Call recursively

T
S

SiftUp(S) S

S

SiftDown(S) S

S

SiftUp(S)
S T

value(S)
T

empty(parent(S))
value(parent(S)) ≥ value(S)

S parent(S)
SiftUp(parent(S))

SiftUp: example 58

15

10 7

6 20

too
large

15

20 7

6 10

swap

15

20 7

6 10

too
large

20

15 7

6 10

swap

20

15 7

6 10

OK

Building a heap 59

Given an array , the goal is to transform it into a
valid heap by swapping its elements

We build a heap from the bottom up:

• The leaves are heaps of one element

• Moving one level up, we merge pairs of subtrees
by adding a new root element to link them

• Because the new root can be “defective”, we call
 on it to “fix” it

:

• Precondition: An array

• Postcondition: An array that, interpreted as a complete
binary tree, has the heap property

1. For :
1.1. Interpret the subarray as a complete

binary tree
1.2. Call

A

SiftDown

BuildHeap(A)
A
A

i = ⌊ |A | /2⌋ − 1,…,0
(Ai, …, A|A|−1)

S
SiftDown(S)

Building a heap: example 60

3

6 10

1 7

3 6 10 1 7

0 1 2 3 4

3

6 10

1 7

step 1

3

7 10

1 6

SiftDown(1)

3

7 10

1 6

step 2

SiftDown(0)

10

7 3

1 6

input array

3

7 10

1 6

3 7 10 1 6

0 1 2 3 4

partial heap

10 7 3 1 6

0 1 2 3 4

10

7 3

1 6

final heap

BuildHeap: complexity 61

Each call to is , where is the
height of the subtree

If is the height of the tree, there are subtrees
of height

The cost of calling for level is thus

The total cost of BuildHeap is obtained by
summing over all levels:

Recall that

Hence, complexity is

SiftDown(S) O(i) i
S

h 2h−i

i

SiftDown i
O(i ⋅ 2h−i)

h

∑
i=0

i ⋅ 2h−i = 2h+1 − h − 2 ∈ O(2h)

h ∝ log n

BuildHeap O(n)

h

i

2h−i

Heap sort 62

A heap can be used to sort an array

First, the array is transformed into a heap using

Then, the top (maximum) element is extracted and
the heap property is restored calling

Then, the top (now second largest) element is
extracted, the heap property is restored, and so on

The cost is , same as for MergeSort (could
have it been better?)

:
1. Call
2. For :

2.1. Swap elements and
2.2. Interpret the subarray as a complete

binary tree and call

BuildHeap

SiftDown

O(n log n)

HeapSort(A)
BuildHeap(A)
i = |A | − 1,…,1

A0 Ai

(A0, …, Ai−1)
T SiftDown(T)

Heap Sort: example 63

3

6 10

1 7

3 6 10 1 7

0 1 2 3 4

10

7 3

1 6

BuildHeap

10 7 3 1 6

0 1 2 3 4

6

7 3

1 10

Swap and A0 A4

6 7 3 1 10

0 1 2 3 4

SiftDown(0)
7

6 3

1 10

7 6 3 1 10

0 1 2 3 4

1

6 3

7 10

1 6 3 7 10

0 1 2 3 4

Swap and A0 A3

6

1 3

7 10

6 1 3 7 10

0 1 2 3 4

SiftDown(0)
3

1 6

7 10

3 1 6 7 10

0 1 2 3 4

Swap and A0 A2

3

1 6

7 10

3 1 6 7 10

0 1 2 3 4

SiftDown(0)

Heap Sort: example 64

1

6 3

7 10

1 6 3 7 10

0 1 2 3 4

Swap and A0 A3

6

1 3

7 10

6 1 3 7 10

0 1 2 3 4

SiftDown(0)
3

1 6

7 10

3 1 6 7 10

0 1 2 3 4

Swap and A0 A2

3

1 6

7 10

3 1 6 7 10

0 1 2 3 4

SiftDown(0)

1

1 6

7 10

1 3 6 7 10

0 1 2 3 4

Swap and A0 A1

Priority queues 65

We can use a heap to implement a priority
queue with two operations:

• to add an element to the
queue

• to extract the “highest
priority” (largest) element from the queue

The queue is a data structure with fields

• 	 preallocated array for storing elements

• 	 number of elements in the queue

:
1. Let
2. Set
3. Interpret as a complete binary tree

and let be the subtree rooted at
4. Call
5. Set

:
1. Let
2. Swap and
3. Interpret as a complete binary tree
4. Call
5. Set
6. Return

PriorityEnqueue(Q, x) x

PriorityDequeue(Q)

Q

Q . A

Q . size

PriorityEnqueue(Q, x)
i ← Q . size
Q . Ai ← x

(Q . A0, …, Q . Ai) T
S Ai

SiftUp(S)
Q . size ← i + 1

PriorityDequeue(Q, x)
i ← Q . size

A0 Ai

(Q . A0, …, Q . Ai−1) T
SiftDown(T)
Q . size ← i − 1

Ai

PriorityEnqueue: example 66

10

7 3

1 6

10 7 3 1 6

0 1 2 3 4 5

A5 ← 15

PriorityEnqueue(Q, 15)

10

7 3

1 6 15

10 7 3 1 6 15

0 1 2 3 4 5

15

7 10

1 6 3

15 7 10 1 6 3

0 1 2 3 4 5

15

7 10

1 6 3

15 7 10 1 6 3

0 1 2 3 4 5

SiftUp(5)

PriorityDequeue: example 67

A0 ↔ A5

PriorityDequeue(Q)

3

7 10

1 6 15

3 7 10 1 6 15

0 1 2 3 4 5 6

3

7 10

1 6 15

3 7 10 1 6 15

0 1 2 3 4 5 6

10

7 3

1 6

15

10 7 3 1 6

0 1 2 3 4 5 6

SiftDown(0)15

7 10

1 6 3

15 7 10 1 6 3

0 1 2 3 4 5 6

B16 Software Engineering
Algorithms and Data Structures 1
Part 3 of 4: Hashing

Dr Andrea Vedaldi
4 lectures, Hilary Term

For lecture notes, tutorial sheets, and updates see
http://www.robots.ox.ac.uk/~vedaldi/teach.html

Hash tables as a generalisation of arrays 69

Arrays

• Map indices to values

• Allow fast access to any of the indices

However, we often wish to index data based on
different types of indices

For example, in a dictionary we would index entries
based on words, which are strings, not integers

Hash tables

• Map keys (e.g., ints, strings) to values

• Allow fast access on average

Hence, a hash table generalises an array to keys
other than consecutive integers

{0,1,…, n − 1} i ↦ Ai

Θ(1)

𝒦 k ↦ Ak

Θ(1)

Hash tables via chaining 70

The simplest implementation of a hash table is a
a linked list containing a chain of key-value pairs

Complexity:

• Retrieving a key requires scanning the entire
list for a match, with worst case cost

• Inserting a new element is : just call

• But, if the inserted key can already exist, one
needs to check first if the key is already present
to avoid duplicates, with cost

This is also the average case cost, as on average key
is found half-way through the list

1.
2. If then:

2.1. Call
3. Else:

3.1. set  

1.
2. If then:

2.1. Return
3. Else:

3.1. Return

L
⟨k, v⟩

k
Θ(n)

⟨k, v⟩ Θ(1)
ListInsertAfter(L, k, v)

k

Θ(n)

k

ChainInsert(L, k, v) :
N ← ListFindPredecessor(L, ⟨k, ⋆ ⟩)

N = NIL
ListInsertAfer(L, ⟨k, v⟩)

N . next . value ← ⟨k, v⟩

ChainRetrieve(L, k) :
N ← ListFindPredecessor(L, ⟨k, ⋆ ⟩)

N = NIL
NIL

N . next . value . v

Hash table via chaining: example 71

next
NA

next
“Eve”

23

next
“Joe”

44

next
“Bob”

62

next
“Tim”

11

next
“Ann”

45

∅

“Zoe”
50

sentinel first element last element

ListFindPredecessor(Q, "Tim")

Q Q . nextQ Q . next

next
NA

next
“Eve”

23

next
“Joe”

44

next
“Bob”

62

next
“Tim”

11

next
“Ann”

45

∅

“Zoe”
50

Q Q . nextQ Q . next

next
NA

next
“Eve”

23

next
“Joe”

44

next
“Bob”

62

next
“Tim”

11

next
“Ann”

45

∅

“Zoe”
50

Q Q . nextQ Q . next

⋯

Multiple chains 72

We can significantly speed up access by using
multiple, short chains

Each chain is tasked with storing a subset of keys

The hash table is a structure with a single field:

• 	 an array of chains

The load factor is the average number of
elements per chain

We also require a hash function mapping keys
to chains

The cost of the hash function is independent of
and (complexity)

Intuition

• We expect the cost of accessing an element in
the hash table to be on average

• If so, and if the number of chains is
proportional to the number of elements added
to the hash table, then the access cost is , the
same as for an array

H

H . A m L0, …, Lm−1

α

α =
n
m

h k
s = h(k)

h : 𝒦 → {0,1,…, m − 1}

n
m Θ(1)

O(α)

m = Ω(n)
n
O(1)

Multiple chains: insert and retrieve 73

1. Let
2. Let
3. Call

1. Let
2. Let
3. Return

HashInsert(H, k, v) :
s ← h(k)
L ← H . A[s]
ChainInsert(L, k, v)

HashRetrieve(L, k) :
s ← h(k)
L ← H . A[s]

ChainRetrieve(L, k)

Example hash function h

h(Eve) = 0
h(Joe) = 0

h(Bob) = 1
h(Tim) = 1
h(Ann) = 2
h(Zoe) = 2

next
NA

next
“Eve”

23

∅

“Joe”
44

next
NA

next
“Bob”

62

∅

“Tim”
11

next
NA

next
“Ann”

45

∅

“Zoe”
50

s = 0

s = 1

s = 2

k

h

hash
value

key

Hash functions 74

Hash functions goals

The goals of a hash function are:

• To map keys to one of slots

• To do so quickly (complexity for all keys)

• To do so uniformly, meaning that different keys
can be expected to spread equally in different
slots

Example for string keys

• is a string encoded in ASCII

• Set

• Set to be the ASCII value of the first
character

This satisfies some of the goals:

✓Maps strings to slots

✓Does so quickly (just read the first character)

✗ But the key distribution is generally not uniform
because certain characters are much more
frequent than others

h

k m

Θ(1)

k

m = 128

h(k)

m = 128

C
ha

ra
ct

er
 fr

eq
ue

nc
y

Building hash functions 75

Keys as integers

Any key can always be thought of as a (large)
natural number:

• Take the bytes used to represent the key in
memory

• Interpret the key as the natural number:

	

The division method

Define:

Thus is the remainder of dividing by

• The remainder is always in the range to

• The remainder is relatively quick to compute

• Is the reminder uniformly distributed, and thus a
good hash function?

k

C ci

C−1

∑
i=0

ci ⋅ 256i

h(k) = k mod m

h(k) k m

0 m − 1

Remainder method: choosing m 76

Criterion: we would like to depend on all the bits of the binary representation of the number

Choosing to be a prime number achieves this

To show this, assume that and differ only by bit , so that

Then:

	

This shows that two keys that differ by a single bit have different hash values

h(k) k

m

k k′ i k′ = k + 2i

h(k′) − h(k) = (k′ mod m) − (k mod m)
= k′ − k mod m
= 2i mod m
≠ 0

Average cost analysis 77

In the worst case, all keys are hashed to the same slot
and insertion and retrieval of keys is

Under suitable statistical assumptions, the average
case is much better

Simple Uniform Hashing Assumption
(SUHA)

• The keys added to the hash table are selected
i.i.d. at random

• All hash values are equally probable:

for all

Ω(n)

k

P[h(k) = s] = 1/m

s ∈ [0, m − 1]

Average key retrieval cost 78

Theorem: missing key cost

Under the SUHA, the number of list elements
visited in attempting to retrieve a key that is not
contained in a hash table , averaged over all
possible keys and tables, is

Proof (sketch)

This is because the average length of chains is
 if the elements in the table spread

uniformly to the chains

Since the key is missing, the entire chain must be
visited before giving up

Theorem: existing key cost

Under the SUHA, the number of list elements
visited by retrieving a key that is contained in a
hash table , averaged over all possible keys and
tables, is

Proof (sketch)

This proof, due to D. Knuth, is difficult and
optional

Intuitively, if the key is present in the hash table, on
average we need to visit only half a chain before
finding it

k
H
1 + α

α = n/m n
m

k
H

1 + α/2 − α/2n

B16 Software Engineering
Algorithms and Data Structures 1
Part 4 of 4: Graphs

Dr Andrea Vedaldi
4 lectures, Hilary Term

For lecture notes, tutorial sheets, and updates see
http://www.robots.ox.ac.uk/~vedaldi/teach.html

Directed graphs 80

A directed graph is given by

• a set ot vertices and

• a set of edges

An edge is drawn as an arrow

Example

A directed graph can be represented by an
adjacency matrix such that

•

• iff

G = (V, E)

V = {v1, …, v|V|}

E ⊂ V × V

(vi, vj) ∈ E vi → vj

A

A ∈ {0,1}|V|×|V|

Aij = 1 (vi, vj) ∈ E

v1

v2

v3 v4 A =

0 1 0 0
0 0 1 0
1 0 0 1
0 0 0 1

Weighted graph 81

A weighted graph has weights
associated to the edges

It can be represented by a weighted adjacency
matrix where

• if

• otherwise

(G, w) w(e) ∈ ℝ
W

Wij = w(vi, vj) (vi, vj) ∈ E

Wij = ∞

Example

v1

v2

v3 v4

3 2

2

6
W =

∞ 3 6 ∞
∞ ∞ 2 ∞
∞ ∞ ∞ 2
∞ ∞ ∞ ∞

Paths 82

A path in an directed graph is a sequence of
vertices such that

The path connects the source to the
destination

The length of the path is the number of edges in it
(i.e., the number of vertices minus 1)

In a weighed directed graph, the weight of a
path is the sum of the edge weights:

	

p = (v1, v2, …, vn) (vi, vi+1) ∈ E

v1
vn

w(p) =
n−1

∑
i=1

w(vi, vi+1)

Example

•

•

•

p = (v1, v2, v3, v4)

length(p) = 3

w(p) = 7
v1

v2

v3 v4

3 2

2

6
source destination

Path composition and subpaths 83

We can compose paths by concatenating them.
Let:

• connects to

• connects to

Note that the destination of is the source of

Then connects to

If , we say that and are
subpaths of path p′ = (v1, …, v2) v1 v2

p′ ′ = (v2, …, v3) v2 v3

p′ p′ ′

p = p′ ⊕ p′ ′ = (v1, …, v2, …, v3) v1 v3

p = p′ ⊕ p′ ′ ⊕ p′ ′ ′ p′ , p′ ′ p′ ′ ′

p

Example

p = (v1, v2, v3, v4) = (v1, v2, v3) ⊕ (v3, v4)
v1

v2

v3 v4

3 2

2

6

Cycles 84

A cycle is a path where source and
destination coincide

Examples

A negative cycle is a cycle whose weight is
negative

Example

p = (v1, …, v1)

v1

v2

v3 v4

v1

v2

v3 v4

(v1, v2, v3, v1)

(v4, v4)

v1

v2

v3 v4

3 2

−3
2

6

3

w(v2, v3, v2) = − 1

Shortest paths 85

A path connecting to is shortest if no path with a smaller weight also connects to

 	 	 (shortest)

	 	 (not shortest)

If there is a negative cycle, then a shortest path may not be defined

	 	 (arbitrarily short)

p u v u v

w(v1, v2, v3, v4) = 7

w(v1, v3, v4) = 8

w(v1, v2, v3, v2, v3, …, v3, v4)

v1

v2

v3 v4

3 2

2

6

v1

v2

v3 v4

3 2

2

6

v1

v2

v3 v4

3 2

−3
2

6

Optimal substructure of shortest paths 86

Theorem

If is a shortest path and are two
subpaths, then and are also shortest paths

Proof

• Let and

• By definition

• If is not shortest, then we can find a path
from to such that

• Hence connects the same vertices as and
has smaller weight

• Hence is not a shortest path

p p′ ⊕ p′ ′ = p
p′ p′ ′

p′ = (u, …, r) p′ ′ = (r, …, v)

w(p) = w(p′) + w(p′ ′)

p′ q
u r w(q) < w(p′)

q ⊕ p′ ′ p
w(q ⊕ p′ ′) < w(p)

p

u ⋯ r ⋯ v

p′ p′ ′

p

⋯ q

Shortest paths problems 87

Single-source shortest paths (SSSP)

Given an oriented weighted graph and a
source vertex , find shortest paths to all vertices

All-pairs shortest paths (APSP)

Given an oriented weighted graph , find
shortest paths between all pairs of vertices

(G, w)
u

v ∈ V

(G, w)
u, v ∈ V

v1 v2

v4

v5

3

1

1

2

6

v3

2

4

Representing shortest paths 88

The shortest paths connecting all pair of vertices
 to can be encoded by using a predecessor

matrix and a distance matrix
 such that:

• is the node before in the path

•

To reconstruct the shortest paths, backtrack:

• Start with and 	 so the path is

• Let 	 so the path is

• Let 	 so the path is

• etc.

puv
u v

P ∈ V|V|×|V|

D ∈ (ℝ+ ∪ {∞})|V|×|V|

r = Puv v puv

Duv = w(puv)

u v (u, …, v)

r = Puv (u, …, r, v)

t = Pur (u, …, t, r, v)

v1 v2

v4

v5

3

1

1

2

6

v3

2

4

P =

1 1 2 2 3
3 2 2 2 3
3 1 3 2 3
4 1 2 4 4
⋅ ⋅ ⋅ ⋅ 5

D =

0 1 3 5 5
5 0 2 4 4
3 4 0 8 2
6 7 9 0 1
∞ ∞ ∞ ∞ 0

for SSSP, we only need one row

Bellman-Ford SSSP 89

The Bellman-Ford algorithm computes the
shortest paths from a fixed source to all vertices

It works incrementally, by establishing all shortest
paths of length 1, then of length 2 and so on

Note: We assume for simplicity that there are no
negative cycles, but the algorithm can be modified
to detect such cycles

Complexity: or for dense graphs

1. For all in :

1.1. Let if or otherwise
1.2. Let if or otherwise

2. Repeat times:
2.1. For all

2.1.1. Call
3. Return and

pv u
v

O(|V | ⋅ |E |) O(|V |3)

BellmanFord(V, E, w, u) :
v V

Dv ← 0 v = u ∞
Pv ← u v = u −1

|V | − 1
(r, v) ∈ E

Relax(D, P, w, r, v)
D P

Path relaxation 90

Let the current path (not necessarily shortest) from
to

Let be an edge with head and let be the
current path from to

The routine replaces with if the latter
is shorter:

1. If :

1.1. Set
1.2. Set
1.3. Return true

2. Return false

pv u
v

(r, v) ∈ E v pr
u r

Relax pv pr ⊕ (r, v)

Relax(D, P, w, r, v) :
Dr + w(r, v) < Dv

Dv ← Dr + w(r, v)
Pv ← r

u

v

r

pv

pr w(r, v)

u

v

r

updated pv

Bellman-Ford: correctness 91

Theorem: After iterations, the Bellman-Ford
algorithm has established all shortest paths of
length at most (and so all shortest paths after

 iterations).

Proof (by induction)

• Suppose that the theorem is true for iterations

• A shortest path of length can bee written
as where, due to the optimal
substructure, is a shortest path of
length , hence already established

• When is relaxed during iteration , a
path from to at least as good as is
established

k

k
|V | − 1

k

p k + 1
p = (u, …, r, v)

p′ = (u, …, r)
k

(r, v) k + 1
puv u v p

u

v
pr

w(r, v)
r

length k

u

v

shortest path pv

length k + 1

=

Floyd-Warshall APSP 92

The Floyd-Warshall algorithm computes paths
 between all pairs of vertices and

It does so incrementally, by establishing all shortest
paths with no intermediate nodes (direct edges),
then all shortest paths with intermediate notes in
the set , then in the set and so on

Complexity: for sparse or dense graphs

1. For all in :

1.1. Let if or otherwise
1.2. Let if or otherwise

2. For all in :
2.1. For all in :

2.1.1. For all in :
2.1.1.1. Call

3. Return and

puv u v

{1} {1,2}

O(|V |3)

FloydWarshall(V, E, w) :
u, v V

Duv ← w(u, v) (u, v) ∈ E ∞
Puv ← u (u, v) ∈ E −1

r V
u V

v V
RelaxFW(D, P, r, u, v)

D P

Path relaxation (Floyd-Warshall variant) 93

Let the current path (not necessarily shortest) from
to

Let be an intermediate vertex and let and
be the current paths from to and from to

The routine replaces with if the
latter is shorter:

1. If :

1.1. Set
1.2. Set

puv u
v

r ∈ V pur prv
u r r v

RelaxFW puv pur ⊕ prv

RelaxFW(D, P, r, u, v) :
Dur + Drv < Duv

Duv ← Dur + Drv

Puv ← Prv

u

v

r

puv

pur

prv

u

v

r

updated (if shorter)puv

Floyd-Warshall: correctness 94

Theorem: After iterations, the Floyd-Warshall
algorithm has established all shortest paths whose
intermediate vertices are within the set (and so
all shortest paths in iterations).

Proof (by induction)

• Suppose that the theorem is true for iterations

• A (simple) shortest path whose intermediate
vertices are within and that contains
vertex can be written as

• The intermediate vertices of shortest paths
 and are in

, so and have already been established

• When is relaxed during iteration , a
path from to at least as good as the shortest
path is established

r

{1,…, r}
|V |

r

p
{1,…, r + 1}

r + 1 p = (u, …, r + 1,…, v)

p′ = (u, …, r + 1) p′ ′ = (r + 1,…, v)
{1,…, r} p′ p′ ′

(r + 1, u, v) r + 1
puv u v
p

u

vp′

p′ ′

shortest paths with
intermediate vertices in {1,…, r}

u

v

shortest path with
intermediate vertices in {1,…, r + 1}

r + 1

Dijkstra’s SSSP algorithm 95

The Dijkstra algorithm solves the SSSP
problem under the assumptions that there are no
negative weights

It establishes the shortest paths from a source in
order of non-decreasing weight

To do so, it maintains a set of “open” vertices for
which a shortest path has not yet been established,
closing one more vertex at each iteration

Complexity: The naïve implementation of this
algorithm shown to the right is

:

1. For all in :
1.1. Let if or otherwise
1.2. Let

2. Set
3. Repeat until is not empty:

3.1. Let

3.2. Remove from
3.3. For all such that

3.3.1. Call
4. Return and

pv u

Q

O(|V |3)

Dijkstra(V, E, w, u)

v V
Dv ← 0 v = u ∞
Pv ← − 1

Q ← V
Q

v* ← argmin
v∈Q

Dv

v* Q
v ∈ Q (v *, v) ∈ E

Relax(D, P, w, v*, v)
D P

Dijkstra’s SSSP algorithm: the invariants 96

The algorithm maintains the following invariant:

(P1) For all closed vertices , is a shortest path

(P2) For all open vertices , the vector is given by

r ∈ V − Q pr

v ∈ Q D
Dv = minr∈Q−V Dr + w(r, v)

u

r

v

open vertices
Q

closed vertices
V − Q

prpr

Dv

Why the algorithm finds a shortest path 97

We have:

• 	 (invariant (P2))

• 	 (calculation of)

• 	 (definition of)

By composing argmin and min, the newly determined
path is , where

Any other path from to is of the form
 where is closed and is

open.

Hence, is indeed shortest:

Dv = minr∈Q−V Dr + w(r, v)

v* ← argminv∈Q Dv v*

Dv = w(pv) D

pv* = pr* ⊕ (r*, v*)

(r*, v*) = argminr∈Q−V,v∈Q w(pr) + w(r, v)

u v*
q = (u, …, r) ⊕ (r, v) ⊕ (v, …, v*) r v

pv*

w(q) ≥ w(u, …, r) + w(r, v) ≥ w(pr*) + (r*, v*) = w(pv*)

u
r*

r

pr

v

v*

pr*

open vertices
Q

(v, …, v*)

closed vertices
V − Q

Dijkstra’s algorithm with a priority queue 98

:

1. For all in :
1.1. Let if or otherwise
1.2. Let

2. Set
3. Repeat until is not empty:

3.1. Let

3.2. Remove from
3.3. For all such that

3.3.1. Call
4. Return and  

:

1. For all in :
1.1. Let if or otherwise
1.2. Let

2. Let be a min-priority queue.
3. Repeat until is not empty:

3.1. Let .
3.2. For all such that :

3.2.1. If calling returns true,
then call

.

4. Return and  

Dijkstra(V, E, w, u)

v V
Dv ← 0 v = u ∞
Pv ← − 1

Q ← V
Q

v* ← argmin
v∈Q

Dv

v* Q
v ∈ Q (v *, v) ∈ E

Relax(D, P, w, v*, v)
D P

DijkstraPriority(V, E, w, u)

v V
Dv ← 0 v = u ∞
Pv ← − 1

Q ← {(0,u)}
Q

(d*, v*) ← PriorityDequeue(Q)
v ∈ Q (v*, v) ∈ E

Relax(D, P, w, v*, v)

PriorityEnqueue(Q, (Dv* + w(v*, v), v))
D P

Dijkstra’s algorithm with a priority queue 99

:

1. For all in :
1.1. Let if or otherwise
1.2. Let

2. Let be a min-priority queue.
3. Repeat until is not empty:

3.1. Let .
3.2. For all such that :

3.2.1. If calling returns true,
then call

.

4. Return and  

DijkstraPriority(V, E, w, u)

v V
Dv ← 0 v = u ∞
Pv ← − 1

Q ← {(0,u)}
Q

(d*, v*) ← PriorityDequeue(Q)
v ∈ Q (v*, v) ∈ E

Relax(D, P, w, v*, v)

PriorityEnqueue(Q, (Dv* + w(v*, v), v))
D P

Using a min-heap, O(|V | log |Q |)

Once for each edge,
so and O(|E | log |Q |) |Q | ≤ |E |

Total
O((|V | + |E |)log |E |)

Dense graph
O(|V |2 log |V |)

Sparse graph
O(|V | log |V |)

Conclusions 100

Key concepts

We have covered:

• Recap of problems, algorithms, complexity

• Lower bound on sorting complexity

• Array, stacks, queues, linked lists

• Binary trees, binary search trees

• Heaps, priority queues

• Hash functions and hashing

• Graphs and shortest paths

Hints

Practice: try implementing and testing algorithms
“for real”. Use C++ for this course, or any other
programming language in general (e.g., Python)

The exercises mostly ask you to write and test
algorithms in C++

Use the provided example code, especially for the
exercises

Use the notes as needed: they contain several details
that can help you to understand the content more
firmly

