
B16 Algorithms and Data Structures 1 - Notes

Andrea Vedaldi

Academic Year 2023-24 (version 2.0)

2

Contents

Introduction 5

1 Problems and algorithms [revision] 7
1.1 Correctness . 8
1.2 Complexity . 11

2 Sorting in quasilinear and linear time 15
2.1 Merge sort [revision] . 15
2.2 A lower bound on the complexity of sorting . 19
2.3 Sorting in linear time . 20

3 Elementary data structures 23
3.1 Passing data by value or reference . 23
3.2 Arrays . 24
3.3 Stacks . 26
3.4 Queues . 29
3.5 Linked lists . 32

4 Binary trees 37
4.1 Size and height of a binary tree . 38
4.2 Elementary representation . 40
4.3 Traversing a tree: depth and breadth first . 42
4.4 Binary search trees . 45
4.5 An alternative representation of complete trees . 48

5 Heaps 53
5.1 Restoring the heap property . 53
5.2 Building a heap . 56
5.3 HeapSort . 58
5.4 Priority queues . 61

6 Hashing 65
6.1 Hashing via chaining . 65
6.2 Average cost analysis of hashing . 66
6.3 C++ implementation of hash tables . 67
6.4 Designing hash functions . 70
6.5 Proof of theorem H2 (optional) . 71

7 Graphs 73
7.1 Formal definition of graph . 73
7.2 Representing graphs using adjacency matrices and lists . 74
7.3 Weighted graphs . 74

3

4 CONTENTS

7.4 Paths . 75
7.5 Cycles . 75
7.6 C++ implementation . 76

8 Shortest paths 81
8.1 Definition of shortest path . 81
8.2 Existence of shortest paths . 82
8.3 Optimal substructure of shortest paths . 83
8.4 A compact representation of shortest paths . 83
8.5 Versions of the shortest paths problem . 84
8.6 Bellman-Ford’s algorithm for the SSSP . 84
8.7 Floyd-Warshall’s algorithm for the APSP . 87
8.8 Dijkstra’s algorithm for the SSSP . 90
8.9 Using a priority queue . 91

A Appendix (optional) 95
A.1 Move semantics . 95
A.2 Universal references . 98

B Locality-sensitive hashing (optional) 103
B.1 Correctness analysis . 104
B.2 Proof of the LSH retrieval theorem (optional) . 106
B.3 C++ implementation of an LSH table (optional) . 107

Introduction

These notes cover the material for B16 Part 3 - Algorithms and Data Structures 1. This part of the course
focuses on the study of algorithms and their theory. It also further explores the practical implementation of
algorithms using the C++ language and its Standard Template Library (STL), which are the focus of Parts 1
and 2 of the course.

A C++ implementation of each algorithm in these notes is provided and discussed, further exploring the
features of C++ and the STL (one or two of these features requires the use of C++14 or above). In the same
spirit, the example sheet (example sheet 3) asks you to reflect on theoretical questions about algorithms, but
also to implement them, completing provided C++ code and running it.

All the material is examinable except the parts marked as Revision or Optional. The parts marked as
Revision review content already covered in A2 in the previous year. This content is not directly examined,
but it is propaedeutic for this course, and you will use it implicitly.

The source code for the exercises is available on GitHub. The code repository is designed to be easily used in
a Codespace, a virtual machine that allows you to edit, compile and run C++ programs in a browser (if you
prefer, you can run this code on your personal machine too). Instructions on how to use a Codespace are
given in the GitHub repository.

These notes and the example sheet are available in PDF and HTML format. All the course materials are
available at this page.

5

https://github.com/vedaldi/b16-code
https://www.robots.ox.ac.uk/~vedaldi/teach.html

6 CONTENTS

Chapter 1

Problems and algorithms [revision]

Informally, an algorithm is a computational procedure that solves a certain computational problem.

A computational problem is a specification of:

1. a type of input;
2. a type of output;
3. and a relationship between the two.

For example, the integer sorting problem can be described as follows:

Integer sorting problem (definition):

• Input: A sequence A = (A0, . . . , An−1) of n integers Ai.
• Output: The same sequence as A, but with the elements permuted such that Ai−1 ≤ Ai for

all i = 1, . . . , n− 1.

A problem instance is obtained by choosing a specific value for the input. For example, an instance of the
integer sorting problem is obtained choosing A to be a specific sequence of numbers, such as A = (4, 2, 3).

An algorithm is a procedure that can solve any instance of the problem. For example, the following algorithm
InsertionSort sorts any integer sequence passed as input, thus solving the integer sorting problem:

InsertionSort(A):

1. For i = 1, 2, . . . , |A| − 1:
1. For j = i, i− 1, . . . , 1:

1. If Aj−1 ≤ Aj , break this loop and continue with the outer loop.
2. Otherwise, swap Aj−1 and Aj .

Usually we do not specify an algorithm using a specific programming language. Rather, we provide an
abstract or mathematical description of the computational steps carried out by the algorithm, which can
then be implemented using (almost) any language. Often this description is given in pseudo-code, as in the
InsertionSort example above.

The importance of algorithms is that they allow us to study different computational strategies for solving
a problem regardless of the implementation details such a the language or the computer system used. In
particular, it allows us to focus on studying two key aspects, correctness and complexity, discussed next.

We are often interested in making algorithms as generally-applicable as possible. For instance, we may be
interested in sorting not just integers, but also real numbers, strings, or any other type of objects that can be
ordered. This motivates introducing the more abstract sorting problem:

Sorting problem (definition):

7

8 CHAPTER 1. PROBLEMS AND ALGORITHMS [REVISION]

• Input: A sequence A = (A0, . . . , An−1) of n objects endowed with an order relation ≤.
• Output: The same sequence as A, but with the elements permuted such that Ai−1 ≤ Ai for

all i = 1, . . . , n− 1.

This version of the problem only requires that the symbol ≤ (the order relation) is defined. For example,
A = (Dijkstra, von Neumann, Minsky, Knuth) is also a valid instantiation of the sorting problem if we define
Ai ≤ Aj to be the the lexicographical order between strings.

If you inspect InsertionSort, you will notice that the algorithm never uses the fact that the input objects
Ai are integers, but only requires the order relation ≤ to be defined. This means that InsertionSort works
for integer sorting, but also fro the more general sorting problem without modifications.

The benefit of more general algorithms is that they can applied in a wider variety of practical situations.
However, this does not mean that the most general algorithm is necessarily the best choice for a specific
application. For example, if in our application we need to sort integers specifically, we may be able to use a
more specific algorithm than InsertionSort. While the result is the same (i.e., to sort the elements), the
more specific algorithm may have other benefits, such as running faster or with less resources. We will give
later the example of CountingSort, a fast sorting algorithm that only works by considering a less-general
version of the sorting problem (i.e., by making more assumptions about the data).

1.1 Correctness
The most important property of any algorithm is to be correct. This means that, for any problem instance
(e.g., any specific sequence of numbers in the integer sorting problem), the algorithm must eventually terminate
producing an output that solves the problem (e.g., a sorted permutation of the sequence).

Because the problem and the algorithm are mathematical descriptions, proving correctness amounts to
providing a mathematical proof.

In most cases, writing such a proof in full requires including many details that distract from the main idea
that makes the algorithm work. Thus, we will usually provide abridged versions of such proofs, focusing on
the key concepts without discussing all trivial details.

Proving the correctness of algorithms generally uses two tools: invariants and mathematical induction.

As the program runs, its state (roughly speaking, the content of the memory of the computer and the
program counter) keeps changing. An invariant is a property P of the state which is always satisfied while
the algorithm executes.

An invariant P (i) is often parameterized with an integer i = 1, 2, . . . corresponding to an iteration counter in
the algorithm.

For example, an invariant applicable to line 1.1 of InsertionSort is:

Sorted suffix invariant P (i) (definition)

The sequence A is the same as the original, but with the first i elements permuted in sorted order,
such that Aj−1 ≤ Aj for all j = 1, . . . , i− 1.

Correctness is proved by showing that the invariant is maintained during the execution of the program. Such
a proof is done by induction. First, one proves the base case P (1) (often corresponding to the fact that
the invariant is trivially true before the first iteration of the algorithm, i.e., right before the algorithm does
anything at all). Then, one proves the inductive step: if P (i) is true at a certain iteration of the algorithm,
then P (i + 1) becomes true at the next iteration, due to the computations performed. By induction, this
shows that, iteration after iteration, the algorithm satisfies properties P (1), P (2),

Eventually, the algorithm satisfies a stopping condition and terminates. For instance, InsertionSort can
stop when P (n) becomes true, where n = |A| is the number of elements in the input sequence. This is because
P (n) states that the entire sequence is sorted, thus solving the problem.

1.1. CORRECTNESS 9

In this example, invariant P (1) must be true before the algorithm has a chance to do anything, so it must be
a property of the input. Input properties amount to assumptions: they are called preconditions and they
are part of the problem specification. The stopping case P (n) matches instead the specification of the output,
and is thus called a postcondition.

For example, in InsertionSort the sorted suffix property P (1) is trivially true for n = 1 for any input
sequence (because a sequence of just one element is always sorted). When P (n) is true, the entire sequence is
sorted, satisfying the postcondition.

In general, algorithms are complex and proving correctness may require applying mathematical induction to
several parts of them. Often, this can be done by breaking down the algorithm into sub-algorithms, analysing
those individually, and then combining the results of the individual analyses into a conclusion about the
algorithm as a whole. For example, we can rewrite InsertionSort as follows:

InsertionSort(A):

Precondition and postcondition as in the sorting problem.

1. For i = 1, 2, . . . , n− 1:
1. Call Insert(A, i)

where most of the pseudo-code has been moved to the algorithm Insert:

Insert(A, i):

• Precondition: P (i), meaning that the first i elements of the sequence A are sorted.
• Postcondition: P (i + 1), meaning that the first i + 1 elements of the sequence A are sorted.

1. For j = i, i− 1, . . . , 1:
1. If Aj−1 ≤ Aj , stop
2. Otherwise, swap Aj−1 and Aj

We have thus extracted the inner loop of InsertionSort as a separate algorithm Insert . With this, we
can prove that InsertionSort is correct assuming that Insert is correct, as follows.

We have already shown that P (1) is correct at line 1.1 of InsertionSort for the first iteration i = 1. Assume
that P (i) is true at the beginning of the i-th iteration. This means that the first i elements of the sequence
are sorted, which matches the precondition of Insert. Hence, calling Insert on step 1.1 (and assuming the
correctness of the latter) results in the first i + 1 element be sorting, thus making P (i + 1) true and proving
the inductive step.

Remark. While this proof may seem fairly verbose for what it shows, it is still an abridged
version of a rigorous proof. For instance, we did not explicitly list preconditions on the index i in
Insert; instead, we have implicitly assumed that a valid index i is provided. What would be this
precondition?

To conclude this section, we should also prove the correctness of Insert. For that, we need another invariant:

Partially sorted prefix invariant Q(i, j) (definition)

The sequence A is the same as the original, but with the first i + 1 elements permuted such that:

• A0 ≤ · · · ≤ Aj−1 ≤ Aj+1 ≤ · · · ≤ Ai;
• Aj ≤ Aj+1.

Note that Q(i, j) is nearly the same as P (i + 1): The first i + 1 elements are sorted, except that the specific
inequality Aj−1 ≤ Aj may not hold.

We can now prove the correctness of Insert. Note that Q(i, i) = P (i + 1) (why?). Hence, when the loop
starts at step 1.1 of Insert, one has j = i and Q(i, j) is true (base case). Furthermore, if Q(i, j) is true at
the beginning of step 1.1, then:

10 CHAPTER 1. PROBLEMS AND ALGORITHMS [REVISION]

• At step 1.1, The algorithm checks if the “missing” inequality Aj−1 ≤ Aj is already satisfied. In this
case Q(i, j) = P (i + 1) and Insert stops because its postcondition is satisfied.

• Otherwise, at step 1.2 Insert swaps Aj−1 ≤ Aj . This makes Q(i, j − 1) true, proving the inductive
step.

Once again, this analysis may seem overly-detailed, and yet we have glossed over a few details. For instance,
we should guarantee that the algorithm eventually stops. This is obvious since the for loop in Insert cannot
run for more iterations than the length of the input sequence A.

1.1.1 C++ implementation of insertion sort
We now look at a possible implementation of insertion sort in C++. We use a std::vector as a container for
the sequence of elements to be sorted. We implement this as a template to allow using an arbitrary element
type T for the elements of the vector. Because we use templates, most of the code is defined in an header file
(.hpp) rather than in an implementation file (.cpp).

File insertion_sort.hpp:
1 #ifndef __insertion_sort__
2 #define __insertion_sort__
3

4 #include <cassert> // for assert
5 #include <cstddef> // for std::size_t
6 #include <utility> // for std::swap
7 #include <vector> // for std::vector
8

9 template <typename T> void insert(std::vector<T> &A, std::size_t i)
10 {
11 assert(i < A.size());
12 for (std::size_t j = i; j >= 1; --j) {
13 if (A[j - 1] <= A[j]) return;
14 std::swap(A[j - 1], A[j]);
15 }
16 }
17

18 template <typename T> void insertion_sort(std::vector<T> &A)
19 {
20 for (size_t i = 1; i < A.size(); ++i) {
21 insert(A, i);
22 }
23 }
24

25 #endif // __insertion_sort__

The functions insert and insertion_sort take as input a reference std::vector<T>& to a STL vector.
This is because the algorithm reorders the vector in-place (i.e., it modifies the vector passed as input instead
of returning a new sorted vector, which would entail duplicating the elements).

The function assert is used only for debugging purposes. In this case, it immediately raises an exception
and terminates the program if the value of the index i is not valid for the input sequence. This is an illegal
condition that the program should never encounter and denotes a programming error (instead a runtime
error which is caused by invalid data being passed to the algorithm, or other error conditions such as running
out of memory). Assertions allow to explicitly state these conditions in code (i.e., similar to a comment, they
inform the programmer reading the code of what to expect) and allow to detect illegal states early in the
execution of the program, which makes it easier to debug the program.

The following test driver (we use this name to denote a test program that executes or ‘drives’ a specific

1.2. COMPLEXITY 11

function to be debugged) tests our implementation by sorting a few numbers.

File insertion_sort_driver.hpp:
1 #include "insertion_sort.hpp"
2 #include "utils.hpp" // for print
3

4 int main(int argc, char **argv)
5 {
6 auto v = std::vector<float>{3, 1, 0, 18, 7};
7 print(v, "Before sorting: ");
8 insertion_sort(v);
9 print(v, "After sorting: ");

10 }

Before sorting: [3, 1, 0, 18, 7]
After sorting: [0, 1, 3, 7, 18]

Note that there is no need for the sequence to contain numbers: we can sort sequences of arbitrary objects
T as long as an ordering relation ≤ is defined between them. For example, because the C++ STL defines
operator<= for strings, we can use the code above to also sort strings:

1 #include "insertion_sort.hpp"
2 #include "utils.hpp"
3

4 int main(int argc, char** argv)
5 {
6 auto v = std::vector<std::string>{
7 "Perlis", "Wilkes", "Hamming", "Minsky", "Wilkinson",
8 "McCarthy", "Dijkstra", "Bachman", "Knuth",
9 };

10 print(v, "Before sorting: ");
11 insertion_sort(v);
12 print(v, "After sorting: ");
13 }

Before sorting: [Perlis, Wilkes, Hamming, Minsky, Wilkinson, McCarthy, Dijkstra, Bachman, Knuth]
After sorting: [Bachman, Dijkstra, Hamming, Knuth, McCarthy, Minsky, Perlis, Wilkes, Wilkinson]

This flexibility is an example of the power of templates. There is a limitation however: while the sorted
elements can be of an arbitrary type T, the container must be a std::vector<T>. The STL already provides
a number of algorithms, including sorting, implemented in an even more generic manner via a more advanced
usage of templates. Specifically, they support different types of containers by accessing the elements via
iterators. We will give an (optional) example of this technique as we look at MergeSort in the next chapter.

1.2 Complexity
The complexity of an algorithm is a measure of the amount of time or space (memory) required to run it. In
practice, the exact time and space complexity depend on implementation details such as the hardware and
the programming language used. Even so, the dominant factor in determining the cost is the nature of the
algorithm and the size of the problem instance being processed. Namely, if n is the size of the problem and if
f(n) is the actual time in seconds that a specific implementation of an algorithm requires to solve a specific
problem instance of that size, we can generally find a bound f(n) ≤ ag(n) where a > 0 is a constant (valid
for a given real-world implementation of the algorithm) that “hides” the dependency on the implementation
details and g(n) is a fixed function, valid for all large n regardless of implementation details.

Formally, we characterize the complexity by saying that the time (or space) cost function f(n) is Big-O of

12 CHAPTER 1. PROBLEMS AND ALGORITHMS [REVISION]

g(n), meaning that:

Big-O notation (definition)

Given two non-negative functions f and g defined on the natural numbers N, we say that f is
Big-O of g, and write f(n) ∈ O(g(n)), if, and only if, there exist constants a > 0 and n0 such that

∀n ≥ n0 : f(n) ≤ ag(n).

We can estimate the Big-O complexity of an algorithm by deriving an upper bound on the number of steps
required to solve any problem instance via a mathematical analysis. This assumes that individual steps in
the algorithm map to steps of a fixed cost when run on an actual CPU. For sorting algorithms, we can for
instance estimate the complexity by counting the number of swap or comparison operations performed. This
assumes that the sequence to be sorted is represented by a data structure such as an array that supports fast
random access, so that reading, comparing and swapping arbitrary elements in the array is fast (specifically,
constant time O(1) independent of the size of the array or the specific elements).

When estimating the complexity, it is important to consider the worst case scenario. Often the speed of an
algorithm depends on the specific problem instance inputted. Since the bound must be universally valid, we
must consider the worst input that we can supply to the algorithm.

For instance, the procedure Insert above may stop the first time step 1.1 is performed; this happens if
the array is already sorted. Instead, in the worst case, the inserted element is the smallest in the array,
and thus the loop iterates i − 1 times. Thus the complexity is O(i) and we say that Insert has linear
complexity. Furthermore, since InsertionSort calls Insert with i = 1, 2, . . . , n− 1, the overall complexity
is
∑n−1

i=1 i = n(n− 1)/2 ∈ O(n2). We thus say that InsertionSort has quadratic complexity.

The space complexity of insertion sort is O(n), as we need an amount of space proportional to the size of
the array. A nice property of insertion sort is that it is an in place algorithm, meaning that no additional
memory is required besides that used to store the input (or, more precisely, it requires a constant amount of
additional memory independent on the input size). Other legitimate sorting algorithms (e.g., merge sort) do
require additional memory (although they generally are all O(n) as far as the order of the space complexity
is concerned).

Sometimes we are interested in characterizing lower bounds to the complexity of algorithms instead of upper
bounds. For this, we use the Big-Ω notation:

Big-Ω notation:

Given two non-negative functions f and g defined on the natural numbers N, we say that f is
Big-Ω of g, and write f(n) ∈ Ω(g(n)), if, and only if, there exist constant a > 0 and n0 such that:

∀n ≥ n0 : f(n) ≥ ag(n).

If g is both a lower bound and an upper bound we use the Big-Θ notation instead:

Big-Θ notation:

We say that f is Big-Θ of g, and write f(n) ∈ Θ(g(n)), if, and only if, f is simultaneously Big-O
and Big-Ω of g.

As an example of these concepts, consider the function f(n) = n2 + cos(4πn) + 1, as in 1.1. This function is
O(n2) because f(n) ≤ 3

2 g(n) for all n ≥ 2. It is also Ω(n2) because f(n) ≥ g(n) for all n ≥ 0. Hence, it is
Θ(n2) as well.

For example, as we have seen above, there are worst-case sequences for which insertion sort requires n2

operations to complete. This means that its complexity is not only O(n2), but also Ω(n2) and thus Θ(n2).

When we characterize the complexity of an algorithm, we seek for an upper bound to its complexity (Big-O),
but we are we are generally interested in giving the tightest possible bound. For instance, a function f which is

1.2. COMPLEXITY 13

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

10

20

30

n0

f(x)
3
2 g(x)
g(x)

100 101

100

101

102

n0

f(x)
3
2 g(x)
g(x)

Figure 1.1: Example of Big-O and Big-Omega bounds (right in log-log space).

O(n) is also O(n2), but we prefer to characterize f as O(n) because the latter bound is stricter and thus more
informative. If we can find a complexity order which is simultaneously a lower and an upper bound (Big-Θ),
this is the tightest possible and thus the best (asymptotic) characterization of the algorithm complexity.

Note that the fact that the complexity of insertion sort is Θ(n2) does not imply that it always takes in the
order of n2 operations to complete; on the contrary, in the best case that the input sequences are already
sorted, insertion sort finishes in O(n) time (is it possible to do better than that with any algorithm?). Unless
otherwise specified, the complexity always refers to the worst case: saying that the complexity of insertion
sort is Θ(n2) means that the algorithm requires at most in the order of n2 operations for all input sequences,
i.e., at least in the order of n2 operations for at least one worst-case input sequences.

14 CHAPTER 1. PROBLEMS AND ALGORITHMS [REVISION]

Chapter 2

Sorting in quasilinear and linear time

In the previous chapter, we have revised the notion of algorithmic correctness and complexity. In this chapter,
we further examine these ideas using as examples other sorting algorithms. We revisit merge sort (covered
last year in A2), an algorithm with complexity Θ(n log n), much better than insertion sort from the last
chapter, which has complexity Θ(n2).

We then prove a lower bound on the complexity of a large class of sorting algorithms, from which we can
conclude that O(n log n) is the best possible worst-case sorting complexity.

Finally, we show that faster sorting algorithms are possible if more assumptions are made on the data to be
sorted.

2.1 Merge sort [revision]
You should already be familiar with the concept of merge sort from A2. Recall that this algorithm works
by splitting a sequence A into two (roughly) equally-sized subsequences A1 and A2, sorting them recursively
via merge sort, and finally merging the results. This recursive algorithm is given in pseudo-code as follows:

MergeSort(A) :

Preconditions and postconditions as in the sorting problem.

1. If |A| = 1, return.
2. Let i← ⌊|A|/2⌋.
3. Let B ← (A0, . . . , Ai−1).
4. Let C ← (Ai, . . . , A|A|−1).
5. Call MergeSort(B).
6. Call MergeSort(C).
7. Set A← Merge(B, C).

The MergeSort algorithms uses internally the Merge algorithm to merge the two subsequences B and C after
sorting them. This is given in pseudo-code as follows:

Merge(B, C) :

Precondition: B and C are sorted arrays.

Postcondition: Returns an array A which contains a copy of the elements of B and C in sorted
order.

1. Let i← 0 and j ← 0.
2. Reserve space for a sequence A of |B|+ |C| elements.
3. While i < |B| and j < |C|:

15

16 CHAPTER 2. SORTING IN QUASILINEAR AND LINEAR TIME

1. If Bi ≤ Cj :
1. Set Ai+j ← Bi.
2. Set i← i + 1.

2. Else:
1. Set Ai+j ← Cj .
2. Set j ← j + 1.

4. While i < |B|:
1. Set Ai+j ← Bi.
2. Set i← i + 1.

5. While j < |C|:
1. Set Ai+j ← Cj .
2. Set j ← j + 1.

6. Return A.

The complexity of MergeSort can be analysed as follows. Let f(n) be the cost of running MergeSort on an
array of size n and assume for simplicity that n is a power of two. The cost is proportional to n (due to the
call of Merge, which is clearly a linear time algorithm) plus the cost 2f(n/2) of calling MergeSort on two
subsequences of size n/2. This gives us a recurrence relation defining the function f(n):

f(1) = 1, f(n) = n + 2f(n/2).

We show that the formula f(n) = n(log2 n + 1) solves the recurrence relation. We can verify by substitution
that the formula is correct for n = 1. Consider a value n > 1, also a power of two, and assume that the
formula is correct for n/2. Then we have

f(n) = n + 2f(n/2) = n + 2(n/2)(log2 n/2 + 1) = n(log2 n + 1)

which verifies the formula for n.

We thus conclude that the complexity of merge sort is O(n log n) (where we use log instead of log2 as they
are equal up to a constant factor). This is known as quasilinear or log-linear complexity.

2.1.1 C++ implementation of merge sort [optional]
This example implementation is optional as it showcases slightly more advanced features of the STL, namely
using iterators and move semantics.

We can implement merge sort in C++ as follows.

File merge_sort.hpp:
1 #ifndef __merge_sort__
2 #define __merge_sort__
3

4 #include <iterator>
5 #include <vector>
6

7 template <typename I>
8 std::vector<typename std::iterator_traits<I>::value_type>
9 merge(const I &begin, const I &middle, const I &end)

10 {
11 using T = typename std::iterator_traits<I>::value_type;
12 auto merged = std::vector<T>{};
13 merged.reserve(end - begin);
14 auto i = begin;
15 auto j = middle;

2.1. MERGE SORT [REVISION] 17

16 while (i != middle && j != end) {
17 if (*i <= *j) {
18 merged.push_back(*i++);
19 } else {
20 merged.push_back(*j++);
21 }
22 }
23 while (i != middle) merged.push_back(*i++);
24 while (j != end) merged.push_back(*j++);
25 return merged;
26 }
27

28 template <typename I> void merge_sort(const I &begin, const I &end)
29 {
30 if (end - begin <= 1) { return; }
31 auto middle = std::distance(begin, end) / 2 + begin;
32 merge_sort(begin, middle);
33 merge_sort(middle, end);
34 auto sorted = merge(begin, middle, end);
35 std::move(sorted.begin(), sorted.end(), begin);
36 }
37

38 #endif // __merge_sort__

The implementation closely matches the pseudo-code. It uses STL iterators to represent generic sequences.
An iterator is a STL object that represents a position in a STL container. For example, if A is a
std::vector<int>, then auto i = A.begin(), or auto i = begin(A), creates an iterator to the first
element of the vector. You can think of i as a fancy pointer: the pointed value is accessed by dereferencing
the iterator via the syntax *i. You can also increment an iterator (i++ or ++i) to access the following
element, just as if it was a pointer.

The iterator A.end(), or end(A), points to a virtual element1, sometimes called a sentinel, which is one
position after the end of the container. One checks if i == A.end() in order to determine if the end of the
sequence has been reached

Iterators also have their own version of the “pointer math”. The difference between iterators is the number of
times an iterator has to be incremented (or decremented, if the difference is negative) to reach the other; for
instance, for a vector A, we have end(A) - begin(A) == A.size() because begin(A) must be incremented
A.size() times to reach end(A).

The implementation uses templates in order to work with any type of iterator. Note that I in the code is
the type of the iterator rather than the type of the iterated value. The iterated value type is obtained by
accessing the value_type member of I using the syntax typename std::iterator_traits<I>::value_type.
For example, if I is the type of the iterator returned by std::vector<int>{}.begin(), then using T =
typename std::iterator_traits<I>::value_type defines T to be int. This explains the syntax used in
defining the return type of the merge function: it is a vector whose element type is the same as the iterated
type (e.g., int).

Finally, note that, at the beginning of merge, the function allocates a new vector and reserves sufficient space
to store all the elements in the merged sequence. This is because merge sort is not an in-place algorithm:
it requires to use a temporary buffer as large as the original sequence to do its job. This is sometimes a

1This is a slight approximation: in the construction above, keys are assumed to be all distinct — if two identical keys are
sampled, we need to discard the second occurrence and sample another one, meaning that keys cannot be assumed to be exactly
i.i.d. This in turn makes certain sequences of slots to be slightly more probable than others. We ignore this effect as, in practice,
the space of keys is usually very large, so the probability of sampling two identical keys is very small.

18 CHAPTER 2. SORTING IN QUASILINEAR AND LINEAR TIME

disadvantage compared to other algorithms that are in place (for example, insertion sort and the heap sort
algorithm we will study later).

Note that, while merge returns a new vector as output, merge_sort modifies the input sequence in place.
This is not strictly needed: merge_sort could just return a new vector; it is done here for compatibility with
the interface to the other sorting algorithms we have implemented, which change the input sequence in place.
In this manner, merge_sort can be used as a “drop-in” replacement for any of these algorithms.

Also, note in the code of merge_sort that the program “moves” the elements of the merged vector on top of
the elements of the input vector using std::move. You could also use std::copy instead of std::move to
do so, but moving can be more efficient by avoiding redundant copies.

The following test driver tests MergeSort.

File merge_sort_driver.cpp:
1 #include "merge_sort.hpp"
2 #include "utils.hpp"
3

4 int main(int argc, const char *argv[])
5 {
6 auto v = std::vector<float>{1, 19, 2, 9, 12, 18, 4, 8, 5, 6,
7 17, 10, 11, 14, 16, 15, 7, 3, 13, 20};
8 print(v, "Before merge sort: ");
9 merge_sort(v.begin(), v.end());

10 print(v, "After merge sort: ");
11 return 0;
12 }

Before merge sort: [1, 19, 2, 9, 12, 18, 4, 8, 5, 6, 17, 10, 11, 14, 16, 15, 7, 3, 13, 20]
After merge sort: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

Because the code is generic, it can also sort strings:
1 #include "merge_sort.hpp"
2 #include "utils.hpp"
3 #include <vector>
4

5 int main(int argc, char** argv)
6 {
7 auto v = std::vector<std::string>{
8 "Perlis", "Wilkes", "Hamming", "Minsky", "Wilkinson",
9 "McCarthy", "Dijkstra", "Bachman", "Knuth",

10 };
11 print(v, "Before sorting: ");
12 merge_sort(begin(v), end(v));
13 print(v, "After sorting: ");
14 }

Before sorting: [Perlis, Wilkes, Hamming, Minsky, Wilkinson, McCarthy, Dijkstra, Bachman, Knuth]
After sorting: [Bachman, Dijkstra, Hamming, Knuth, McCarthy, Minsky, Perlis, Wilkes, Wilkinson]

In fact, the code works not only with arbitrary element types, but also with different container types. For
instance, it can use a std::array instead of a std::vector:

1 #include "merge_sort.hpp"
2 #include "utils.hpp"
3 #include <array>
4

2.2. A LOWER BOUND ON THE COMPLEXITY OF SORTING 19

5 int main(int argc, char** argv)
6 {
7 auto v = std::array<std::string, 9>{
8 "Perlis", "Wilkes", "Hamming", "Minsky", "Wilkinson",
9 "McCarthy", "Dijkstra", "Bachman", "Knuth",

10 };
11 print(v, "Before sorting: ");
12 merge_sort(begin(v), end(v));
13 print(v, "After sorting: ");
14 }

Before sorting: [Perlis, Wilkes, Hamming, Minsky, Wilkinson, McCarthy, Dijkstra, Bachman, Knuth]
After sorting: [Bachman, Dijkstra, Hamming, Knuth, McCarthy, Minsky, Perlis, Wilkes, Wilkinson]

We can even just use a vanilla C array of objects (which is not a STL container)! In this case, begin(v) is
just a (vanilla) pointer to the first element of the array, and end(v) is a pointer to one element past the last.

1 #include "merge_sort.hpp"
2 #include "utils.hpp"
3

4 int main(int argc, char** argv)
5 {
6 std::string v [9] = {
7 "Perlis", "Wilkes", "Hamming", "Minsky", "Wilkinson",
8 "McCarthy", "Dijkstra", "Bachman", "Knuth",
9 };

10 print(v, "Before sorting: ");
11 merge_sort(begin(v), end(v));
12 print(v, "After sorting: ");
13 }

Before sorting: [Perlis, Wilkes, Hamming, Minsky, Wilkinson, McCarthy, Dijkstra, Bachman, Knuth]
After sorting: [Bachman, Dijkstra, Hamming, Knuth, McCarthy, Minsky, Perlis, Wilkes, Wilkinson]

2.2 A lower bound on the complexity of sorting
So far, we have given sorting algorithms with a complexity of O(n2) and O(n log n). It is natural to ask what
is the best possible speed achievable by any sorting algorithm.

For example, it is clear that any sorting algorithm is at least Ω(n) as it has to check at least once every
element in the input sequence. However, there is a non-trivial gap between bounds Ω(n) and O(n log n).

This is a typical situation. We often have an estimate of the minimum amount of work that any algorithm
requires to carry out to solve a given problem and we also have a specific algorithm that does more work
than the minimum we could prove. In this situation, it is often very difficult to show whether the algorithm
can be improved further or not (after all, our estimate of the minimum amount of work required is only that,
an estimate, and the algorithm may already be optimal). However, for the sorting problem we can prove the
following very remarkable result:

Theorem 2.1 (Lower bound on sorting complexity). Let S be an algorithm that solves the sorting problem
by computing a permutation S(A) that sorts a sequence A. Furthermore, assume that S does not look a
the element values (e.g., Ai), but only at pairwise comparisons between its elements (e.g., Ai ≤ Aj). Then,
the worst case time complexity of the algorithm S is at least Ω(n log n). Hence, any sorting algorithm with
complexity O(n log n) is asymptotically optimal.

Stated in another way, there is no way of sorting a sequence faster than in O(n log n) steps if one is only
allowed to perform pairwise element comparisons.

20 CHAPTER 2. SORTING IN QUASILINEAR AND LINEAR TIME

Proof. The proof is simple and yet insightful. There are n! possible permutations A of the sequence (1, 2, . . . , n)
of n elements. Hence, as A varies in the set of all such permutations, applications of S(A) must produce n!
different permutations to “undo” them and sort these sequences. However, the number of different outputs
that S can produce as different inputs are provided to it is limited by the number of comparisons performed.
For instance, if S terminates after performing one pairwise comparison, it can generate at most two different
outputs/permutations (regardless of the specific choice of input sequences A). This is because the algorithm is
deterministic, and which output it produces only depends only on the result of the one comparison performed,
which is either true or false; thus, there can be only two different outputs. Similarly, if S always terminates
after at most two comparisons, it can generate at most 4 different outputs. After t comparisons, it can
generate at most 2t different outputs.

Since the algorithm must be able to generate all n! possible permutations in order to sort all sequences A, for
at least some sequences it must perform a number of comparisons t such that:

2t ≥ n!

In order to rewrite this in terms of a complexity order, note that:

2t ≥ n! = n · (n− 1) · · · (n/2)︸ ︷︷ ︸
n/2 times

(n/2− 1) · · · 2 · 1︸ ︷︷ ︸
n/2 times

≥ n · (n− 1) · · · (n/2)︸ ︷︷ ︸
n/2 times

≥ (n/2)n/2 = 2 n
2 log n

2

Hence, we conclude that t ≥ n
2 log n

2 , which means that the complexity is at least Ω(n log n).

The remarkable thing about this result is its universality: no matter how smart you are in designing a sorting
algorithm of this type, you can never sort faster than this (because of the need to perform a minimum number
of pairwise comparisons). Hence, algorithms such as merge sort and heap sort are, in this sense, optimal.

There are some limitations of this result, however. First, this is an asymptotic argument: it is still possible to
obtain practical gains by optimizing a given algorithm for a given problem size. Second, sometimes we are
interested in the average (or expected) cost of an algorithm, not in its worst case. Thirdly, as we show next,
if one is allowed to make further assumptions on the data and the algorithm, it is possible to improve the
asymptotic order too.

2.3 Sorting in linear time
We now show that sorting algorithms faster than Ω(n log n) are possible, but this requires to leverage more
assumptions on the sequence to be sorted. For example, assume that the elements Ai are integers in the
range 0 to k − 1. Then, we can sort faster by counting:

CountingSort(A, k):

Precondition. A sequence A whose elements are integers in the range 0 to k − 1.

Postcondition. The sequence A has the same integer elements as before, but sorted in non-
decreasing order.

1. Allocate a sequence C with k elements initialized to 0.
2. For i = 0, . . . , |A| − 1:

1. Set CAi
← CAi

+ 1.
3. Let i← 0 and j ← 0.
4. While j < k:

1. If Cj = 0, then set j ← j + 1 and continue with line 4.
2. Set Ai ← j.

2.3. SORTING IN LINEAR TIME 21

3. Set Cj ← Cj − 1.
4. Set i← i + 1.

This algorithm works by counting how many occurrences of each number in the range 0 to k − 1 exist in the
input sequence. It then reconstructs the sequence by emitting that number of occurrences of each number, in
order.

The complexity of this algorithm is driven by the for loop at line 4. Since j is only updated occasionally
during the loop, it is not immediately obvious how many time this loop runs. First, note that the “then” part
of line 4.1 is executed at most k times, because each time j is incremented by one and its maximum value is
k − 1. Then, note that lines 4.2-4.4 are executed at most n times because each time i is incremented by one
and its maximum value is n− 1 (otherwise the algorithm would output more than the n input elements).
Hence, the while loop at line 4 costs at most O(n + k) operations. The cost of initializing the sequence at
line 1 and 2 is also at most O(n + k) operations. In short, the complexity of CountingSort is O(n + k).

The following C++ implementation demonstrates this algorithm.

File counting_sort_driver.cpp:
1 #include "utils.hpp"
2 #include <vector>
3

4 void counting_sort(std::vector<int> &A, size_t k)
5 {
6 auto counts = std::vector<size_t>(k, 0);
7 size_t i = 0;
8 size_t j = 0;
9 for (auto j : A) ++counts[j];

10 while (j < k) {
11 if (counts[j] == 0) {
12 ++j;
13 continue;
14 }
15 A[i++] = static_cast<int>(j);
16 --counts[j];
17 }
18 }
19

20 int main(int argc, char **argv)
21 {
22 auto A = std::vector<int>{5, 3, 0, 1, 5, 3};
23 print(A, "Before sorting: ");
24 counting_sort(A, 6);
25 print(A, "After sorting: ");
26 return 0;
27 }

Before sorting: [5, 3, 0, 1, 5, 3]
After sorting: [0, 1, 3, 3, 5, 5]

22 CHAPTER 2. SORTING IN QUASILINEAR AND LINEAR TIME

Chapter 3

Elementary data structures

Data structures such as arrays, stacks, queues and linked lists are data containers that support certain
operations efficiently, such adding a new element to the container or searching for one based on some attribute.
Different data structures support different operations with different efficiency, and are thus appropriate in
different scenarios.

In this chapter, we will look at basic data structures and corresponding algorithms. We will also provide
example C++ implementations of them. However, all such structures and algorithms are already implemented
in the C++ STL. Therefore, in “real life” you would never write such implementations by yourself, but use
the standard ones.

Before discussing data structures and their algorithms, we need first to clarify our notation for references and
values in the pseudo-code we use, which we do in the next section.

3.1 Passing data by value or reference
When passing an argument to a function, it is important to clarify if the argument is passed by value or by
reference.

In C, you have the concepts of value type (T) and pointer type (T*). C++ adds the concept of reference type
(T&), which can be thought of as a pointer which looks like a value . C++11 further adds the concept of
rvalue reference (T&&); this is an advanced optional topic, briefly discussed below and in the Appendix.

In pseudo-code, we do not require such level of detail; instead, we borrow the simple implicit convention used
in programming languages such as Python:

Convention: passing arguments to functions in pseudo-code:

1. All the elementary types (numbers and strings) are passed by value.
2. All other types, including data structures, are passed by reference.

For example, if A is an array, i is an integer, and we define in pseudo-code the function DoSomething as
follows:

DoSomething(A, i) :

1. Set A0 ← 1.
2. Set i← 1.

then the following chunk of pseudo-code:

TestDriver :

1. Set A0 ← 0.

23

24 CHAPTER 3. ELEMENTARY DATA STRUCTURES

2. Set i← 0.
3. Call DoSomething(A, i).
4. Print A0 and i.

prints the values 1 and 0 because A, which is a data structure, is passed by reference and i, which is a number,
is passed by value.

In C++, references must be denoted explicitly. In order to implement the example above in C++, we can imple-
ment the array A using a std::vector<float>, so the function do_something takes a std::vector<float>&
as argument (note the & symbol, meaning that the argument is a reference to a vector), as in the following
example:

1 #include <iostream>
2 #include <vector>
3

4 void do_something(std::vector<float>& A, int i)
5 {
6 A[0] = 1;
7 i = 1;
8 }
9

10 int main(int argc, char** argv)
11 {
12 auto A = std::vector<float>{0};
13 int i = 0;
14 std::cout << "Before calling do_something(): "
15 << A[0] << ", " << i << '\n';
16 do_something(A, i);
17 std::cout << "After calling do_something(): "
18 << A[0] << ", " << i << '\n';
19 return 0;
20 }

Before calling do_something(): 0, 0
After calling do_something(): 1, 0

3.2 Arrays
An array is a data structure storing a sequence of elements A = (A0, . . . , An−1) with efficient operations
for reading and writing any element Ai in constant O(1) time, independently of the index i and size n of
the array. This is also called random access to differentiate it from other access patterns such as sequential
(sequential access is in particular often easier to support efficiently in data structures, including non-arrays).

An array is usually implemented by mapping consecutive array elements to consecutive equally-sized memory
blocks in the memory of the computer. Then, index i can immediately be mapped to the corresponding
memory address by multiplying i by the block size and adding the result to the base address, i.e., the address
of the first array element. In this manner, the CPU can access the relevant record in one step.

Remark. The latter assumes that the hardware implementing the memory supports random
access too (e.g., RAM or ROM). This may not be the case for all memory types: for instance, the
array could be stored on a tape, in which case the CPU would have to wait for the tape to unroll
to the correct position before being able to read or write an element! (While the idea of using a
tape may seem anachronistic, tapes are still in common use today for archival and backup).

While accessing individual elements in an array is fast, inserting and deleting them is not. This is because
existing elements must be shifted in memory in order to create a space to add a new element, or to fill the
hole left by removing an element.

3.2. ARRAYS 25

For instance, the following algorithm inserts an element x at position i in the array A:

ArrayInsert(A, i, x):

• Precondition: An array A = (A0, . . . , An−1), an index 0 ≤ i ≤ n, and a new value x.
• Postcondition: The array A is (A0, . . . , Ai−1, x, Ai, . . . , An−1).

1. Set A← (A0, . . . , An−1, ∗) // Extend the array by one element
2. For j = n, . . . , i + 1 : // Iterate backward

1. Set Aj ← Aj−1.
3. Set Ai ← x.

Intuitively, ArrayInsert works by replacing element An with An−1, An−1 with An−2 and so in order to
make space for the new element x at position i.

In order to prove the correctness of ArrayInsert, we consider the invariant:

Array insertion invariant P (j):

The current array is the same as the input A, except for an additional element at position j. In
other words, the array is of the type:

(A0, . . . , Aj−1, ∗, Aj , . . . , An−1)

where ∗ denotes some arbitrary value.

At the beginning of the loop, j = n and P (n) simply states that the sequence is (A0, . . . , An−1, ∗), which is
the same as the input A plus one “free space” at the end. Assuming that at the beginning of each iteration
of the for loop the array the invariant P (j) is satisfied, we see that line 1.1 satisfies P (j − 1):

(A0, . . . , Aj−2, Aj−1, ∗, Aj , . . . , An−1) assuming P (j)
(A0, . . . , Aj−2, Aj−1, Aj−1, Aj , . . . , An−1) after the copy operation at line 1.1
(A0, . . . , Aj−2, ∗, Aj−1, Aj , . . . , An−1) interpreted as P (j − 1)

At the end of the last iteration of the loop, in particular, property P (i) is satisfied. Line 2 then replaces ∗ at
position j with the element x to be inserted in the array.

The cost of insertion is evidently O(n) as, in the worst case, inserting at i = 0 requires shifting n elements.
Also note that at line 1 of the algorithm we recreate the array with a placeholder for the new element at the
end. Depending on implementation details, this may cost O(1), if the memory buffer backing the array was
pre-allocated for more than n element, or O(n), if a new, larger memory buffer needs to be allocated from
scratch, which usually involves copying all the old elements into the new buffer.

3.2.1 C++ implementation of arrays
C++ already implements arrays as std::vector. For demonstration purposes, we show how ArrayInsert
can be implemented from scratch.

File array.hpp:
1 #ifndef __array__
2 #define __array__
3

4 #include <cassert>
5 #include <cstddef>
6 #include <vector>
7

8 template <typename T>
9 void array_insert(std::vector<T> &A, std::size_t index, const T &x)

10 {

26 CHAPTER 3. ELEMENTARY DATA STRUCTURES

11 assert(index <= A.size());
12 if (index == A.size()) {
13 A.push_back(x);
14 } else {
15 auto i = A.size();
16 A.push_back(A[i - 1]);
17 for (--i; i > index; --i) { A[i] = A[i - 1]; }
18 A[index] = x;
19 }
20 }
21

22 #endif // __array__

Note that, due to the std::vector API, we need a special case for inserting the element at the very end of
the array. This is because the member function push_back both extends the array by one element and sets
the element value.

The following test driver runs this code, inserting a few numbers at the beginning of an array. The code uses
the utils.hpp that defines a print function, which we use for conveniently print the content of containers.

1 #include "array.hpp"
2 #include "utils.hpp"
3

4 int main(int argc, char **argv)
5 {
6 auto A = std::vector<float>{};
7 print(A, "Array before inserting any elment = ");
8 for (size_t i = 0; i < 5; ++i) {
9 array_insert(A, 0, static_cast<float>(i));

10 print(A, "Array after inserting " + std::to_string(i) +
11 " at position 0 = ");
12 }
13 return 0;
14 }

Array before inserting any elment = []
Array after inserting 0 at position 0 = [0]
Array after inserting 1 at position 0 = [1, 0]
Array after inserting 2 at position 0 = [2, 1, 0]
Array after inserting 3 at position 0 = [3, 2, 1, 0]
Array after inserting 4 at position 0 = [4, 3, 2, 1, 0]

3.3 Stacks
A stack is a container with two efficient operations: adding and removing an element from the top of the
stack. This is also called a LIFO (last-in first-out) data structure.

We can represent a stack S with an array A plus an index i pointing at the top of the stack. Conventionally,
i points to the first available unused space at the top, so that, when the stack is empty, i = 0.

For example, this is a stack with 3 elements (5, 4, 7) and space for six in total:

[0] 5 [1] 4 [2] 7 [i=3] _ [4] _ [5] _

We can then push and pop element to and from the stack in time O(1) by manipulating the index i. For

3.3. STACKS 27

instance, pushing 1 and 3 on the stack results in the data structure:

[0] 5 [1] 4 [2] 7 [3] 1 [4] 3 [i=5] _

Pushing on the stack amounts to writing a new value in Ai and then incrementing i:

StackPush(S, x) :

1. Set S.AS.i ← x.
2. Set S.i← S.i + 1.

Popping an element from the stack does the reverse:

StackPop(S) :

1. Set S.i← S.i− 1.
2. Return S.AS.i.

3.3.1 C++ implementation of stacks
We implement a stack as a C++ class with the following member functions: push, pop, top, empty and full
(the last two to tell if the stack is empty or full). The stack is backed by a std::vector to represent the
array A; the latter must be pre-allocated with sufficient space to store the stack at its fullest; in other words,
pushing more than |A| elements on the stack would cause an error in this basic implementation.

File stack.hpp:
1 #ifndef __stack__
2 #define __stack__
3

4 #include <cassert>
5 #include <cstddef>
6 #include <vector>
7

8 template <typename T> class Stack
9 {

10 protected:
11 std::vector<T> _storage;
12 std::size_t _head;
13

14 public:
15 // Initialize a stack with the specified capacity
16 Stack(std::size_t capacity) : _storage(capacity), _head{0} {}
17

18 // Access the value at the top of the stack
19 T &top()
20 {
21 assert(_head > 0);
22 return _storage[_head - 1];
23 }
24

25 // Const-access the value at the top of the stack
26 const T &top() const
27 {
28 assert(_head > 0);
29 return _storage[_head - 1];
30 }

28 CHAPTER 3. ELEMENTARY DATA STRUCTURES

31

32 // Pop the value at the top of the stack
33 void pop()
34 {
35 assert(_head >= 1);
36 --_head;
37 }
38

39 // Copy a value to the top of the stack
40 void push(const T &x)
41 {
42 assert(_head < _storage.size());
43 _storage[_head++] = x;
44 }
45

46 // Check if the stack is empty
47 bool empty() const { return _head == 0; }
48

49 // Check if the stack is full
50 bool full() const { return _head == _storage.size(); }
51 };
52

53 #endif // __stack__

Members _storage and _head are protected (we use the convention of prefixing private and protected
members of a class with an underscore _). In order to preserve encapsulation and modularity, the user of the
Stack class should not be able to access such implementation details.

The class provides two versions of the top function, one const and one non-const. They both return a
reference to the top element in the stack, with the only difference that the reference is respectively const or
non-const. When the stack itself is const, only const member functions can be invoked. In this case, the
const accessor top still allows reading the top element on the stack.

You may also wonder why the pop function returns void instead of the popped element. This is because this
would require to always copy this element back to the caller, even when the caller does not need it. Using
top to access the top element and pop to remove it allows to fine-tune which operations are applied.

Finally, the push function copies the specified value to the top of the stack. A real-world implementation
would also include an implementation of push that supports moving instead of copying the value, which can
in some cases be much more efficient(see the optional appendix on move semantics).

The following test driver pushes and then pops a few numbers from a stack.

File stack_driver.cpp:
1 #include "stack.hpp"
2 #include <iostream>
3

4 int main(int argc, char **argv)
5 {
6 // Create a stack with space for 10 elements
7 auto stack = Stack<float>(10);
8

9 // Push some numbers on the stack
10 std::cout << "Pushing";
11 for (int i = 0; i < 5; ++i) {
12 stack.push(i);

3.4. QUEUES 29

13 std::cout << ' ' << i;
14 }
15 std::cout << '\n';
16

17 // Pop the numbers from the stack
18 std::cout << "Popping";
19 while (!stack.empty()) {
20 std::cout << ' ' << stack.top();
21 stack.pop();
22 }
23 std::cout << '\n';
24

25 return 0;
26 }

Pushing 0 1 2 3 4
Popping 4 3 2 1 0

3.4 Queues
A queue is a container with two efficient operations: adding an element at the back of the queue and
removing an element from the front of the queue. This is also called a FIFO (first in first out) data structure.

We can implement a queue in a manner similar to the stack, using an array A and and index i to keep track
of the head of the queue. However, a complication with queues is that, as we keep adding and removing
elements, eventually the index will fall off the boundary of the array even if not all elements in the array are
used up by the queue. In other words, we may have i > |A| even though the queue does not contain more
elements than the array size.

We solve this issue by allowing indices to “wrap” around the array in a circular fashion.

In order to do so, we represent a queue with an array A plus and index i pointing at the first non used
element at the back of the queue and an integer n denoting the number of elements in the queue. Initially,
with an empty queue, we have i = 0 and n = 0.

For example, an array A storing an empty queue with space for six elements in total looks like the following
structure:

[i = i+n = 0] _

[1] _ [2] _ [3] _ [4] _

[5] _

After enqueuing the value x, this looks like:

[i+n = 0] x

[1] _ [2] _ [3] _ [4] _

[i = 5] _

Note that the index i is now set to the value 5: this is the result of subtracting 1 from it, obtaining −1 and
then “wrapping around” the array. n is set to 1 to indicate that there is one element in the queue, wrapping
around (i.e., 5 + 1 = 6 becomes 0). After enqueuing the value y, this becomes:

[i+n = 0] x

[1] _ [2] _ [3] _ [i=4] _

[5] y

30 CHAPTER 3. ELEMENTARY DATA STRUCTURES

In pseudo-code, the Enqueue algorithm is given by:

Enqueue(Q, x) :

1. Set Q.AQ.i ← x.
2. Set Q.n← Q.n + 1.
3. Set Q.i← Q.i− 1.
4. If Q.i = −1:

1. Set Q.i← |Q.A| − 1.

Line 1 stores x at the first empty space at back of the queue, pointed at by Q.i. Line 2 increases the size of
the queue by one. Line 3 decreases Q.i by one, so that Q.i points to the new empty element at the back of
the queue. Lines 4 and 4.1 check if Q.i is −1, which is beyond the array boundaries. If so, they reset Qi to
|Q.A| − 1, pointing to the last element of the array (in other words, position −1 is remapped to position
|Q.A| − 1).

The Dequeue algorithm is given by:

Dequeue(Q) :

1. Let j ← Q.i + Q.n
2. If j ≥ |Q.A|:

1. Set j ← j − |Q.A|.
3. Set Q.n← Q.n− 1.
4. Return Q.Aj .

The main idea of this algorithm is the calculation of the index j pointing at the head of the queue. Normally,
this is obtained by summing to the index Q.i, pointing at the back of the queue, the number of elements in the
queue Q.n. However, if the resulting index exceeds the array boundaries, we “wrap around” by subtracting
|Q.A| from it (line 2.1).

3.4.1 C++ implementation of queues
We now introduce a simple C++ implementation of a Queue class.

File queue.hpp:
1 #ifndef __queue__
2 #define __queue__
3

4 #include <cassert>
5 #include <cstddef>
6 #include <vector>
7

8 template <typename T> class Queue
9 {

10 protected:
11 std::vector<T> _storage;
12 size_t _position;
13 size_t _size;
14

15 public:
16 // Create a queue with the specified capacity
17 Queue(size_t capacity) : _storage(capacity), _position{0}, _size{0}
18 {
19 assert(capacity > 0);
20 }
21

22 // Access the element at the front of the queue

3.4. QUEUES 31

23 T &front() { return _storage[_head()]; }
24

25 // Const-access the element at the front of the queue
26 const T &front() const { return _storage[_head()]; }
27

28 // Add a new element to the back of the queue by copying
29 void enqueue(const T &value)
30 {
31 assert(_size < _storage.size());
32 _storage[_position] = value;
33 _size++;
34 if (_position == 0) {
35 _position = _storage.size() - 1;
36 } else {
37 _position--;
38 }
39 }
40

41 // Remove the element at the front of the queue
42 void dequeue()
43 {
44 assert(_size >= 1);
45 _size--;
46 }
47

48 // Check if the queue is empty
49 bool empty() const { return _size == 0; }
50

51 // Check if the queue is full
52 bool full() const { return _size == _storage.size(); }
53

54 protected:
55 // Return the index of the element at the front of the queue.
56 size_t _head() const
57 {
58 assert(_size >= 1);
59 auto index = _position + _size;
60 if (index >= _storage.size()) { index -= _storage.size(); }
61 return index;
62 }
63 };
64

65 #endif // __queue__

The class is similar to Stack and contains a direct implementation of the two algorithms above. Just as for
Stack, the dequeue operation is broken down into front() (to access the element at the front of the queue)
and dequeue() for removing the element. The function enqueue() adds an element to the front of the queue,
initializing it with a copy of the value specified as argument.

The protected member function _head() returns the index of the front element and it is separated out as a
function because this calculation needs to be performed in different parts of the code.

The following test driver uses this code.

File queue_driver.cpp:

32 CHAPTER 3. ELEMENTARY DATA STRUCTURES

1 #include <iostream>
2

3 #include "queue.hpp"
4 #include "utils.hpp"
5

6 int main(int argc, char **argv)
7 {
8 // Create a queue with space for a few elements
9 auto queue = Queue<float>(5);

10

11 // Keep pushing and popping elements from the queue for a while
12 // wrapping around the ring buffer
13 for (int repetition = 0; repetition < 3; ++repetition) {
14 std::cout << "Enqueued";
15 for (int i = 0; i < 3; ++i) {
16 queue.enqueue(i);
17 std::cout << ' ' << i;
18 }
19 std::cout << '\n';
20

21 std::cout << "Dequeued";
22 for (int i = 0; i < 3; ++i) {
23 std::cout << ' ' << queue.front();
24 queue.dequeue();
25 }
26 std::cout << '\n';
27 }
28

29 return 0;
30 }

Enqueued 0 1 2
Dequeued 0 1 2
Enqueued 0 1 2
Dequeued 0 1 2
Enqueued 0 1 2
Dequeued 0 1 2

3.5 Linked lists
Linked lists, similar to arrays, represent a sequence of elements (A0, . . . , An−1). However, differently from
arrays, they support efficient insertion and deletion, but slow random access (sequential access is fast).

The idea of linked lists is to break the association, used in arrays, of the index of an element in the sequence
with a particular memory address. In this manner, random access becomes slower as there is no one-step
calculation that gives the memory address of an element, but insertions and deletions become fast because
the memory locations of the elements already in the list need not to be changed when elements are added or
taken away from the list.

Formally, a singly-linked list is a chain of nodes. We can represent a list node N as a structure with two
fields:

• N.next is a pointer to the next node in the list. This pointer can be NIL if there is no next node
(denoting the end of the list).

• N.value is the data associated to the node (e.g., a number or a string).

3.5. LINKED LISTS 33

We represent the list as a whole using a pseudo node called a sentinel. The sentinel does not contain useful
data; its only purpose is to point to the first actual node in the list. This is convenient because we can use a
single object type to represent both the list and the individual nodes.

For example, a list containing the values “a”, “b”, “c” may look like:

next next nextsentinel a b c

Linked lists are particularly useful because they allow to quickly add new nodes at any point in the list. For
instance, if Q is an existing node (possibly the sentinel), the following algorithm inserts a new node/value
after Q:

ListInsertAfter(Q, x) :

1. Create a new node N .
2. Set N.next← Q.next.
3. Set N.value← x.
4. Set Q.next← N .

The complexity of insertion is thus O(1) vs O(n) of an array.

Due to the chain-like structure, list elements must be accessed sequentially. For example, the following
algorithm finds the predecessor of the first node N in list Q whose value matches a given query x:

ListFindPredecessor(Q, x) :

1. While Q and Q.next are not NIL:
1. If Q.next.value = x return Q.
2. Set Q← Q.next.

2. Return NIL.

Finding the predecessor rather than the node itself can be useful to use routines such as ListInsertAfter
that affect the node following the one specified.

3.5.1 C++ implementation of linked lists
A possible implementation of the node object and of ListInsertAfter in C++ is as follows.

File list.hpp:
1 #ifndef __list__
2 #define __list__
3

4 #include <cassert>
5 #include <memory>
6 #include <vector>
7

8 template <typename T> struct Node {
9 T value;

10 std::unique_ptr<Node<T>> next;
11

12 Node() : value{}, next{nullptr} {}
13 Node(const T &value, std::unique_ptr<Node<T>> next)
14 : value{value}, next{std::move(next)}
15 {
16 }
17 };
18

19 template <typename T>

34 CHAPTER 3. ELEMENTARY DATA STRUCTURES

20 Node<T> *list_insert_after(Node<T> *node, const T &value)
21 {
22 node->next =
23 std::make_unique<Node<T>>(value, std::move(node->next));
24 return node->next.get();
25 }
26

27 template <typename T, typename F>
28 Node<T> *list_find_predecessor(Node<T> *node, F predicate)
29 {
30 for (; node && node->next; node = node->next.get()) {
31 if (predicate(node->next->value)) return node;
32 }
33 return nullptr;
34 }
35

36 template <typename T>
37 std::vector<T> list_to_vector(const Node<T> &node)
38 {
39 std::vector<T> v;
40 for (Node<T> *current = node.next.get(); current;
41 current = current->next.get()) {
42 v.push_back(current->value);
43 }
44 return v;
45 }
46

47 #endif // __list__

We use a template to allow customizing the type of data T held by a node. We also use unique_ptr to
manage ownership of the node objects.

The smart pointer unique_ptr was briefly mentioned in Part 1 and 2. Here, we look at it in more detail.

Differently form a regular C/C++ pointer, which has an unspecified ownership relation with the pointed
object, an instance of unique_ptr is meant to own this object. This means that, when the unique_ptr
object is deleted, the pointed object is deleted as well.

The concept of object ownership is not enforced at the level of the C++ language. Rather, it is a
programming idiom where the owner of an object is the entity (usually another object) responsible for
managing its lifetime.

In the most basic case, there is a single entity that owns an object (the STL also supports shared ownership
via shared_ptr). This means that:

1. When the owner entity is destroyed, it can safely destroy all the objects it owns, because no other entity
in the program will attempt to also destroy them (this is good because it is an error to attempt to destroy
the same object twice);

2. Other parts of the program that want to use the owned object must ensure that the owner is still alive
while they use it. This is because, when the owner is destroyed, then the owned object is destroyed as well
and thus becomes invalid.

The name unique in unique_ptr means that this is the only pointer meant to own the object (not necessarily
the only pointer to the object that exists in the program, though!). By having nodes in the list own the
successive nodes via unique_ptr, we do not need to worry about calling delete to destroy the nodes when
the list is destroyed. Destroying the root node causes a “chain reaction” that automatically destroys all the

3.5. LINKED LISTS 35

other nodes in the list. This is also an example of the RAII paradigm.

Without smart pointers, you would normally use the Node my_new_node = new Node{...} syntax to dy-
namically create a new Node instance. With unique_ptr, you would use instead std::unique_ptr<Node>
my_new_node = std::make_unique<Node>(...), which does the same, but wraps the vanilla pointer in a
unique_ptr, to denote ownership.

An interesting aspect of unique_ptr is the fact it supports transferring ownership, but this: (1) requires to
use the std::move operator in the program, which makes the programmer’s intent very explicit, and (2) still
guarantees that a single owning pointer remains.

In the code above, this feature can be observed in the constructor that creates a new Node pointing
to an existing node. Suppose that your code has a variable my_old_node, a unique_ptr to a Node.
To use this constructor, you must use a syntax similar to std::unique_ptr<Node> my_new_node =
std::make_unique<Node>(value, std::move(my_old_node)). This is a mouthful, but it is actually very
explicit code. It means: create a new Node, wrapping it in a unique_ptr, and transfer ownership of the
object pointed by my_old_node to it. After this operation is complete, my_old_node is invalid (i.e., it
becomes a null pointer), to denote the fact that ownership has been transferred.

We also include a convenience function list_to_vector to copy the data in the list to a vector, which we
use for printing. This function scans the list, one Node at a time, and prints the corresponding values. It
is rather straightforward, but for the use of the get member function on the next data member (i.e., the
call next.get()). This operation returns the vanilla pointer contained in unique_ptr, in a certain sense
“unwrapping it”.

Why is get used by this code? Is it safe to do so and why?

The following test driver shows how to create an empty list. It then uses list_insert_after to insert ten
numbers in the list. Note that we pass the sentinel node to the function: this has the effect of inserting these
numbers at the beginning of the list. The code also shows how the list can be traversed by maintaining a
pointer to the current node, and using next to update the latter to the following node.

File list_driver.cpp:
1 #include "list.hpp"
2 #include "utils.hpp"
3

4 int main(int argc, char **argv)
5 {
6 auto list = Node<float>{};
7

8 // Insert some numbers in the list
9 for (int i = 0; i < 10; ++i) {

10 list_insert_after(&list, static_cast<float>(i));
11 }
12

13 // Print the list
14 print(list_to_vector(list));
15

16 return 0;
17 }

[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

36 CHAPTER 3. ELEMENTARY DATA STRUCTURES

Chapter 4

Binary trees

Binary trees are ubiquitous and very useful data structures. A binary tree is similar to a linked list from the
previous chapter, but each Node can have up to two successors, a left child and a right child (so the node is
called the parent of its successors), as in the following diagram:

L

L R

R

v0

v1

v2 v3

v4

For this to be a valid tree, the diagram can never loop back: it is not possible for an ancestor of a node to be
also one of its descendent.

We also need a mathematical definition of binary tree. A binary tree can be defined recursively as follows:

Definition 4.1 (Binary tree). A binary tree is a finite set T such that:

1. T = {} is empty or

2. T = {r} ∪ L ∪R is the union of three disjoint sets, where r is the root of the tree and the left child L and
right child R are binary trees (sometimes called subtrees).

As for the linked list before, the elements v of a binary tree T are called nodes. Each node v is the root of a
different subtree and identifies it.1

Using this definition, the binary tree in the diagram above is given by the expression:

{v0} ∪ ({v1} ∪ ({v2} ∪ {} ∪ {}) ∪ ({v3} ∪ {} ∪ {})) ∪ ({v4} ∪ {} ∪ {}})

To understand why, note that the diagram shows the tree T = {v0} ∪ L ∪R where the left and right subtrees
L = {v1} ∪ L′ ∪R′ and R = {v4} ∪ {} ∪ {} have diagrams:

1Because nodes and subtrees are in one-to-one correspondence (with the exception of the empty subtree), the terms “node”
and “subtree” are sometimes used interchangeably, but mathematically they are distinct.

37

38 CHAPTER 4. BINARY TREES

L R

v1

v2 v3

v4

The right subtree R = {v4} ∪ {} ∪ {} is called a leaf because both of its children are empty. On the other
hand, the L subtree further decomposes in two leaf trees {v2} ∪ {} ∪ {} and {v3} ∪ {} ∪ {}, whose diagrams
are:

v2 v3

The depth of a node is the number of steps required to reach it from the root. For instance, in the tree
above, v0 has depth 0, v1 and v4 have depth 1 and v2 and v3 have depth 2.

Because we have defined the tree as a set, each node can can appear only once in it (sets cannot contain
repeated elements). Visually, the diagram of a tree cannot contain connections looping backwards. For
instance, the following diagram does not represent a tree:

L

L R

R

L

v0

v1

v2 v3

v4

We often associate values to the nodes of a tree; for example, the following tree has integers associated to
the nodes:

L

L R

R

v0: 3

v1: 5

v2: 3 v3: 2

v4: 5

4.1 Size and height of a binary tree
The size of a binary tree T is the number of nodes, denoted as the caridnality |T | of the set.

4.1. SIZE AND HEIGHT OF A BINARY TREE 39

The height of a binary tree T is the maximum number of steps required to go from the root node to any of
the leaf nodes. Formally:

Definition 4.2 (Height of a binary tree). The height h(T) of a binary tree T is given by

h(T) =
{

1 + max{h(L), h(R)}, if T = {r} ∪ L ∪R,

−1, if T is empty.

An empty tree T = {} has thus height of -1. This is an arbitrary but useful value because, used in the formula
above, assigns height 0 to a tree T = {r} that contains a single node.

As an additional example, the following tree has size 5 and height 2:

L

L R

R

v0

v1

v2 v3

v4

If the tree is not empty, its height is also the same as the largest depth of any of its nodes.

Since many algorithms have a complexity proportional to the height of a tree, we are interested in packing as
many nodes as possible for a given height. A binary tree is perfect if it contains the maximum number of
nodes for its height.

For example, the tree in the diagram above is not perfect, but the following one is:

L

L R

R

L R

v0

v1

v2 v3

v4

v5 v6

The following theorem establishes a few facts about perfect trees:

Theorem 4.1 (Maximum size of a binary tree).

1. The number of nodes in a binary tree T is at most 2h(T)+1 − 1.
2. This bound is tight when the binary tree is perfect.
3. The binary tree T is perfect if, and only if, T is empty or if T = {r} ∪L∪R and the subtrees L and R are

perfect and have equal height.

Proof. This proof is optional. We can prove fact (1) by induction. For a tree of height -1 (empty tree), the
formula returns 0 as maximum number of nodes, which is correct. Let T be a tree of height larger than -1;

40 CHAPTER 4. BINARY TREES

then the tree is not empty, so it can be written as T = {r}∪L∪R. The height of subtrees L and R is at most
h(L) = h(R) = h(T)− 1 (because of the definition of height of a tree). Hence, assuming inductively that the
formula is correct for height less than h(T), the maximum number of nodes in the tree T is upper-bounded
by:

|T | = |{r}|+ |L|+ |R|
≤ 1 + 2h(L)+1 − 1 + 2h(R)+1 − 1
≤ 2 · 2h(T) − 1 = 2h(T)+1 − 1.

This proves fact (1).

Fact (2) is due to the definition of perfect tree.

Fact (3) can be proven by showing that a tree constructed in this manner has indeed the maximum number
of nodes, and that no other trees of equal height can have more nodes – this can also be shown by induction
in a similar manner as (1).

Below we introduce two different representations of binary trees. From the viewpoint of some algorithms
operating on trees, they are largely equivalent. For such algorithms, the only requirement is that the following
four operations can be implemented efficiently (O(1) time complexity):

• left(T) is the left child of tree T .
• right(T) is the right child of tree T .
• empty(T) tells whether the tree T is empty or not.
• value(T) is the value (data) associated to the root of tree T .

4.2 Elementary representation
The conventional way of representing a binary tree T is to use an object N which is either:

• A structure with:
– a left child object N.left,
– a right child object N.right,
– a value N.value;

or
• The null object NIL (to represent an empty tree).

With this, we can simply define:

• left(N) = N.left
• right(N) = N.right
• empty(N) = δ{N=NIL}
• value(N) = N.value

4.2.1 C++ implementation of an elementary binary tree
We now give an example implementation in C++ of the elementary representation of a binary tree.

File binary_tree.hpp:
1 #ifndef __binary_tree__
2 #define __binary_tree__
3

4 #include <memory>
5 #include <utility>
6

7 // A class representing a binary tree
8 template <typename V> struct BinaryTree {

4.2. ELEMENTARY REPRESENTATION 41

9 V _value;
10 std::unique_ptr<BinaryTree<V>> _left;
11 std::unique_ptr<BinaryTree<V>> _right;
12

13 // These are global functions because of `friend`
14 friend V &value(BinaryTree *t) { return t->_value; }
15 friend const V &value(const BinaryTree *t) { return t->_value; }
16 friend BinaryTree *left(BinaryTree *t) { return t->_left.get(); }
17 friend BinaryTree *right(BinaryTree *t)
18 {
19 return t->_right.get();
20 }
21 };
22

23 // A helper function to build a binary tree
24 template <typename V>
25 std::unique_ptr<BinaryTree<V>>
26 make_binary_tree(const V &value, std::unique_ptr<BinaryTree<V>> left,
27 std::unique_ptr<BinaryTree<V>> right)
28 {
29 return std::unique_ptr<BinaryTree<V>>{
30 new BinaryTree<V>{value, std::move(left), std::move(right)}};
31 }
32

33 #endif // __binary_tree__

There are a few points of note in this particular implementation. First, just like the linked list before, a tree
owns its subtrees via unique_ptr. This means that, when a tree object instance is deleted, so are all the
subtrees automatically.

The functions left and right are defined as friends of BinaryTree for notational convenience (friend has
no effect since BinaryTree has no private members). Specifically, friend is used here to define non-member
functions directly in the class body.

left and right return a vanilla pointer to the left and right trees (using the .get() member function of
unique_ptr). This means that a tree is represented by a pointer to a BinaryTree<V> structure, not by a
value of type BinaryTree<V>. This is a subtle but important difference as pointers can take value nullptr,
which we use here to denote an empty tree. Note in particular that we did not implement the empty function.
This is implicitly given by testing whether the pointer is nullptr or not. Because in C++ a pointer implicitly
converts to a boolean true or false depending on whether it is different from nullptr or not, in code we
can simply use the syntax if (tree) { /* empty */} or if (!tree) { /* not empty */ } to act based
on whether a tree is empty or not.

Note also a tree is represented by a vanilla pointer, not by a unique_ptr. This is because we do no wish to
transfer ownership of the subtrees to a function that calls left or right merely for the purpose of visiting the
tree. Ownership is instead kept by the part of the program that manages the lifetime of the tree structure.

Finally, make_binary_tree is a convenience function that makes the creation of new trees slighter more
compact.

In the code distribution, we also provide a file binary_tree_print.hpp defining the function
print_binary_tree to print a binary tree on screen diagrammatically.

42 CHAPTER 4. BINARY TREES

4.3 Traversing a tree: depth and breadth first
Traversing a tree means visiting each of its nodes starting from the root. There are two main types of
traversals: depth first and breadth first.

A depth-first traversal (DFT) descends the tree from the root to the left-most leaf and then gradually
backtracks and descends the other branches. This is very easy to implement with a recursive algorithm:

DFTraversal(T) :

Precondition: T is a binary tree.

1. If empty(T), return.
2. Optionally, process value(T). // Pre-order visit
3. Call DFTraversal(left(T)).
4. Optionally, process value(T). // In-order visit
5. Call DFTraversal(right(T)).
6. Optionally, process value(T). // Post-order visit

When a subtree T is visited during a traversal, one usually performs an operation on its value (such as printing
the value on screen). This operation does not necessarily occur immediately when the subtree is visited;
instead, it can be performed before the recursive calls (pre-oder), in between (in-order) or after (post-order).

For example, DFTraversal called on the following tree:

L

L R

R

v0

v1

v2 v3

v4

will visit the nodes in order v0, v1, v2, v3, v4 but will process their values as follows:

• pre-order depth-first processing order: v0, v1, v2, v3, v4 (same as the visit order);
• in-order depth-first processing order: v2, v1, v3, v0, v4;
• post-order depth-first processing order: v2, v3, v1, v4, v0.

Alternatively, a breadth-first traversal (BFT) visits first all the nodes at depth 0, then all the nodes at
depth 1 and so on. This is done with the help of a queue Q, pushing the child of each visited node and
poppin git later to vist its children:

BFTraversal(Q) :

Precondition: The queue Q = (T) contains the tree as sole element.

1. While empty(Q) is false, repeat:
1. Let T ← Dequeue(Q).
2. If empty(T), continue with the next iteration of loop 1.
3. Optionally, process value(T).
4. Call Enqueue(Q, left(T)).
5. Call Enqueue(Q, right(T)).

Note that, in the pseudo-code, the function BFTraversal should be called with a queue Q that initially
contains the root of the tree.

4.3. TRAVERSING A TREE: DEPTH AND BREADTH FIRST 43

For example, BFTraversal applied to the tree above will visit and process the values of nodes in order v0, v1,
v4, v2 and v3.

Traversing a tree is sometimes called “searching” the tree, so the two algorithms above are also called
depth-first search (DFS) and breadth-first search (BFS). We prefer not to use this terminology to avoid
confusion with algorithms that actually search trees for specific elements.

We can implement these two functions, as well as a function to compute the height of a tree, as follows.

File binary_tree_traversal.hpp:
1 #ifndef __binary_tree_traversal__
2 #define __binary_tree_traversal__
3

4 #include <queue>
5

6 // Compute the height of a tree
7 template <typename T> int height(const T &tree)
8 {
9 if (empty(tree)) return -1;

10 return 1 + std::max(height(left(tree)), height(right(tree)));
11 }
12

13 // Depth first traversal (in order)
14 template <class T, typename F>
15 void df_traversal(const T &tree, F action)
16 {
17 if (!tree) return;
18 df_traversal(left(tree), action);
19 action(tree);
20 df_traversal(right(tree), action);
21 }
22

23 // Breadth first traversal
24 template <class T, typename F>
25 void bf_traversal(const T &tree, F action)
26 {
27 auto queue = std::queue<T>{};
28 queue.push(tree);
29 while (!queue.empty()) {
30 auto ¤t = queue.front();
31 if (current) {
32 action(current);
33 queue.push(left(current)); // enqueue
34 queue.push(right(current)); // enqueue
35 }
36 queue.pop(); // dequeue
37 }
38 }
39

40 #endif // __binary_tree_traversal__

The functions take as input an object action. This is a callable object (e.g., another function) which is
executed for each subtree. For example, this can be used to print the value associated to each subtree in the
tree, as shown in the following test driver:

44 CHAPTER 4. BINARY TREES

1 #include "binary_tree.hpp"
2 #include "binary_tree_traversal.hpp"
3 #include "binary_tree_print.hpp"
4

5 int main(int argc, char** argv)
6 {
7 auto bt = make_binary_tree(1.0f,
8 make_binary_tree(2.0f,
9 make_binary_tree(4.0f, {}, {}),

10 make_binary_tree(5.0f, {},
11 make_binary_tree(8.0f, {}, {})
12)
13),
14 make_binary_tree(3.0f,
15 make_binary_tree(6.0f, {}, {}),
16 make_binary_tree(7.0f, {}, {})
17));
18

19 std::cout << "Tree:\n";
20 print_binary_tree(bt.get());
21

22 auto action = [](const auto& tree) {
23 std::cout << "Visited subtree: " << value(tree) << '\n';
24 };
25

26 std::cout << "\nDepth-first traversal (DFT)\n";
27 df_traversal(bt.get(), action);
28

29 std::cout << "\nBreadth-first traversal (BFT)\n";
30 bf_traversal(bt.get(), action);
31

32 return 0;
33 }

Tree:
1 -------v
2 -v 3 -v
4 5 -v 6 7

8

Depth-first traversal (DFT)
Visited subtree: 4
Visited subtree: 2
Visited subtree: 5
Visited subtree: 8
Visited subtree: 1
Visited subtree: 6
Visited subtree: 3
Visited subtree: 7

Breadth-first traversal (BFT)
Visited subtree: 1
Visited subtree: 2
Visited subtree: 3

4.4. BINARY SEARCH TREES 45

Visited subtree: 4
Visited subtree: 5
Visited subtree: 6
Visited subtree: 7
Visited subtree: 8

Note that print_binary_tree is an utility function to print a tree graphically. It is provided in the header
binary_tree_print.hpp.

4.4 Binary search trees
An important application of trees is to store elements so that they can be quickly searched by value. This
requires a special kind of tree called a binary search tree:

Binary search tree (definition)

A binary tree T is a binary search tree (BST) if, and only if, T is empty or T = {r} ∪ L ∪R and

• for all subtrees S ⊂ L one has value(S) ≤ value(T) and
• for all subtrees S ⊂ R one has value(S) > value(T) and
• L and R are also BSTs.

Note that the definition implies not only that value(L) ≤ value(T) for the left child, but that this is also true
for all left descendant subtrees S ⊂ L (and a symmetric condition applies to right descendants).

4.4.1 Searching a BST
Searching for an element x means returning a subtree that has x as the value of its root, if any can be found.
We can in fact do something slightly more general and return the maximal subtree whose value does not
exceed x. In pseudo-code, this is done as follows:

BSTSearch(T, x) :

• Precondition: T is a BST.
• Postcondition: Returns the subtree S ⊂ T with the largest value not greater than x. If no

such subtree exists, returns the empty tree.

1. If empty(T) or value(T) = x, then return T .
2. Let T = {r} ∪ L ∪R.
3. If x < value(T), then return BSTSearch(L, x).
4. Otherwise:

1. Let S ← BSTSearch(R, x).
2. If S is empty, return T .
3. Otherwise, return S.

The algorithm works as follows:

1. Line 1 checks if the current tree T is empty, in which case it gives up, or if the value of T is x, in which
case it stops and returns T as the solution.

2. Otherwise, line 3 checks if the value of value(T) is greater than x. In this case, T cannot be the answer as
we are looking for a tree whose value is not greater than x. The same is true for all right subtrees, as their
values are even larger than T . Hence, the algorithm calls BSTSearch recursively to the left in search for
the subtree that satisfies the required property. Note that. if the recursive function fails to find a suitable
tree, then there is none.

3. Otherwise, value(T) is (strictly) less than x (value(T) < x) and line 4 is executed. Since the value of T
is less than x, it is also not greater than x, so T could be the solution to the problem according to the
definition. However, T may not be maximal among the trees whose value is not greater than x. Hence,

46 CHAPTER 4. BINARY TREES

the algorithm calls BSTSearch recursively to the right to check if a better subtree S can be found. If such
a tree is found, then S is the solution to the problem because value(T) < value(S) ≤ x. Otherwise, T is
the solution, because value(T) < x as we have already established, and there is no better subtree that
satisfies the property.

4.4.2 Building a BST
We can easily build a BST from scratch by inserting one value at a time: if the tree is empty, we just create a
singleton tree with that value. Otherwise, we insert the value into the left or right subtrees, depending on
whether it is smaller or greater than the value of the root, in a recursive fashion.

Because we need to modify the tree in order to insert elements into it, it is not enough to use the operations
left, right, value, etc. we have introduced above because they do not allow to modify the tree. To apply
such modifications, we make use of the specific elementary tree representation N introduced above.

With this, inserting an element in the tree is obtained via the algorithm:

BSTInsert(N, x) :

• Precondition: N is the elementary representation of a BST.
• Postcondition: Returns a BST that contains the same nodes as N plus a new node whose

value is x.

1. If N is NIL then return {x, NIL, NIL}.
2. If x ≤ N.value then:

1. Set N.left← BSTInsert(N.left, x)
3. Otherwise:

1. Set N.right← BSTInsert(N.right, x)
4. Return N .

4.4.3 C++ implementation of a BST
The following example implementation demonstrates building and searching a BST in C++.

File binary_search_tree.hpp:
1 #ifndef __binary_search_tree__
2 #define __binary_search_tree__
3

4 #include "binary_tree.hpp"
5

6 template <class T, typename V> T bst_search(const T &tree, const V &v)
7 {
8 if (!tree || v == value(tree)) return tree;
9 if (v < value(tree)) return bst_search(left(tree), v);

10 auto other = bst_search(right(tree), v);
11 return other ? other : tree;
12 }
13

14 template <typename V>
15 std::unique_ptr<BinaryTree<V>>
16 bst_insert(std::unique_ptr<BinaryTree<V>> tree, const V &v)
17 {
18 if (!tree) return make_binary_tree(v, {}, {});
19 if (v <= value(tree.get())) {
20 tree->_left = bst_insert(std::move(tree->_left), v);
21 } else {
22 tree->_right = bst_insert(std::move(tree->_right), v);

4.4. BINARY SEARCH TREES 47

23 }
24 return tree;
25 }
26

27 #endif // __binary_search_tree__

Note that bst_search only use the basic interface to a binary tree (i.e., the functions left, right, and value.
It therefore works for BST backed by any binary tree type (for example, we introduce below a CompleteBT
class that is also be compatible with this interface). On the other hand, bst_insert assumes that the tree is
of type BinaryTree.

File binary_search_tree_driver.hpp:
1 #include "binary_search_tree.hpp"
2 #include "binary_tree_print.hpp"
3

4 #include <iostream>
5

6 int main(int argc, char **argv)
7 {
8 std::unique_ptr<BinaryTree<int>> bt;
9

10 for (int x : {12, 5, 18, 2, 9, 15, 19, 13, 17}) {
11 bt = bst_insert(std::move(bt), x);
12 std::cout << "Tree after inserting " << x << ":\n";
13 print_binary_tree(bt.get());
14 std::cout << "\n";
15 }
16

17 for (int x : {0, 5, 6, 18, 19, 20}) {
18 BinaryTree<int> *result = bst_search(bt.get(), x);
19 std::cout << "The largest element not exceeding " << x
20 << " is ";
21 std::cout << (result ? std::to_string(value(result))
22 : "none");
23 std::cout << "\n";
24 }
25

26 return 0;
27 }

Tree after inserting 12:
12

Tree after inserting 5:
12
5

Tree after inserting 18:
12 -v
5 18

Tree after inserting 2:
12 -v
5 18

48 CHAPTER 4. BINARY TREES

2

Tree after inserting 9:
12 ---v
5 -v 18
2 9

Tree after inserting 15:
12 ---v
5 -v 18
2 9 15

Tree after inserting 19:
12 ---v
5 -v 18 -v
2 9 15 19

Tree after inserting 13:
12 ---v
5 -v 18 -v
2 9 15 19

13

Tree after inserting 17:
12 ---v
5 -v 18 -----v
2 9 15 -v 19

13 17

The largest element not exceeding 0 is none
The largest element not exceeding 5 is 5
The largest element not exceeding 6 is 5
The largest element not exceeding 18 is 18
The largest element not exceeding 19 is 19
The largest element not exceeding 20 is 19

4.5 An alternative representation of complete trees

We now give a different representation that is only applicable to a subset of all binary trees known as
“complete trees”.

Definition 4.3 (Complete binary tree). A binary tree T is complete if, and only if, all the levels in the tree
are full except the last one, which is partially filled from left to right.

For example, the first of these two trees is complete, but the second one is not:

4.5. AN ALTERNATIVE REPRESENTATION OF COMPLETE TREES 49

L

L R

R L

L L

R

v0

v1

v2 v3

v4

v0

v1

v2

v4

v3

The nodes in a complete binary tree can be enumerated from left to right and from top to bottom, in the
same manner as a breadth first traversal. For example, we can enumerate the nodes in the complete binary
tree above as follows:

L

L R

R

[0] v0

[1] v1

[3] v2 [4] v3

[2] v4

We can then represent the tree by array A of n elements, where n is the total number of nodes in the tree.
We do so by associating the i-th node in the tree with element Ai in the array and storing in the array the
node’s value. For example, the complete binary tree above maps to the array

A = [value(v0), value(v1), value(v4), value(v2), value(v3)].

This representation is very space efficient because it does not require storing “metadata” such as pointers to
nodes: only the actual node values are stored in the array. Furthermore, the usual operations are also very
efficient. Specifically, given the index i of a node, we have:

• left(i) = 2i + 1
• right(i) = 2i + 2
• parent(i) = ⌊(i− 1)/2⌋
• empty(i) = δ{i≥|A|}
• value(i) = Ai

Note that we also defined a function parent which computes the index of the parent of a given subtree.
This comes “for free” with this representation, but would require some modifications and increased space
utilization to implement in the elementary binary tree representation discussed before.

The following example shows how the formulas apply to node v1 in the tree above:

50 CHAPTER 4. BINARY TREES

[floor(i/2) = 0] v0

[i = 1] v1 [2] v4

[2i+1 = 3] v2 [2i+2 = 4] v3

Proof. This proof is optional. The correctness of the formulas above is not immediately obvious. We now
sketch how the expression left(i) can be proved. By induction, if i = 0, then the index of the left child is
1 = 2 · 0 + 1 = left(0). Furthermore, suppose that the left child of node i > 0 is left(i) = 2i + 1. The following
node 2i + 2 is thus the the right child of i, and the node after that 2i + 3 = 2(i + 1) + 1 = left(i + 1) is the
left child of node i + 1. Q.E.D.

4.5.1 C++ implementation of a complete binary tree
Next, we show an implementation of a complete binary tree in C++. This implementation “wraps” a given
vector. Wrappers are classes that provide a view of a piece of data (in this case a vector) as if it was of a
different type (in this case a complete binary tree).

File binary_tree_complete.hpp:
1 #ifndef __binary_tree_complete__
2 #define __binary_tree_complete__
3

4 #include <cstddef>
5 #include <limits>
6 #include <vector>
7

8 // Wraps a vector in a complete binary tree
9 template <typename V> struct CompleteBT {

10 std::vector<V> *_storage;
11 std::size_t _root;
12 std::size_t _size;
13

14 CompleteBT<V>(std::vector<V> *storage)
15 : _storage{storage}, _root{0}, _size{storage->size()}
16 {
17 }
18

19 CompleteBT<V>(std::vector<V> *storage, std::size_t root,
20 std::size_t size)
21 : _storage{storage}, _root{root}, _size{size}
22 {
23 }
24

25 CompleteBT<V> subtree(std::size_t root) const
26 {
27 return CompleteBT<V>{_storage, root, _size};
28 }
29

30 friend V &value(CompleteBT &t) { return (*t._storage)[t._root]; }

4.5. AN ALTERNATIVE REPRESENTATION OF COMPLETE TREES 51

31 friend const V &value(const CompleteBT &t)
32 {
33 return (*t._storage)[t._root];
34 }
35 friend CompleteBT parent(const CompleteBT &t)
36 {
37 if (t._root == 0)
38 return t.subtree(std::numeric_limits<std::size_t>::max());
39 return t.subtree((t._root - 1) / 2);
40 }
41 friend CompleteBT left(const CompleteBT &t)
42 {
43 return t.subtree(2 * t._root + 1);
44 }
45 friend CompleteBT right(const CompleteBT &t)
46 {
47 return t.subtree(2 * t._root + 2);
48 }
49

50 explicit operator bool() const
51 {
52 return _root < _size;
53 } // not empty
54 };
55

56 #endif // __binary_tree_complete__

The functions left, right and parent return another instance of CompleteBT. Note that, differently from
BinaryTree, they do not return a pointer to a tree object, but a CompleteBT object by value. CompleteBT
internally contains a pointer to the vector backing the tree — in a certain sense, CompleteBT is just a “fancy
pointer”.

operator bool allows a syntax such as if (tree) { ... } to work by testing if the CompleteBT tree is
empty or not. For BinaryTree* this is implicitly obtained by testing whether the pointer is null or not.

In a full implementation, we may need to also implement operator* (dereferencing), but we do not use it in
our examples.

Note that we have also implemented the function parent, which was not available for BinaryTree (it is an
exercise to add parent() to BinaryTree).

Because of the common interface implemented by functions left, right, etc., we can use the same generic
algorithms we have shown before, as in the following example.

File binary_tree_complete_driver.cpp:
1 #include "binary_tree_complete.hpp"
2 #include "binary_tree_print.hpp"
3 #include "binary_tree_traversal.hpp"
4 #include <utils.hpp>
5

6 #include <vector>
7

8 int main(int argc, char **argv)
9 {

10 auto array = std::vector<float>{1, 2, 3, 4, 5, 6, 7, 8};
11 auto bt = CompleteBT<float>{&array};

52 CHAPTER 4. BINARY TREES

12

13 std::cout << "Tree:\n";
14 print_binary_tree(bt);
15

16 auto action = [](const auto &tree) {
17 std::cout << "Visited subtree: " << value(tree) << '\n';
18 };
19

20 std::cout << "\nDepth-first traversal (DFT)\n";
21 df_traversal(bt, action);
22

23 std::cout << "\nBreadth-first traversal (BFT)\n";
24 bf_traversal(bt, action);
25

26 return 0;
27 }

Tree:
1 ----v
2 -v 3 -v
4 5 6 7
8

Depth-first traversal (DFT)
Visited subtree: 8
Visited subtree: 4
Visited subtree: 2
Visited subtree: 5
Visited subtree: 1
Visited subtree: 6
Visited subtree: 3
Visited subtree: 7

Breadth-first traversal (BFT)
Visited subtree: 1
Visited subtree: 2
Visited subtree: 3
Visited subtree: 4
Visited subtree: 5
Visited subtree: 6
Visited subtree: 7
Visited subtree: 8

Chapter 5

Heaps

Heaps are efficient data structures used to implement sorting algorithms, priority queues, and other useful
tools.

A heap is a binary tree with the following property:

Definition 5.1 (Heap property). A binary tree T has the heap property if, and only if, for any subtree
S ⊂ T :

value(S) ≤ value(parent(S))

Here’s an example of a heap with five nodes:

L R

L R

v0: 15

v1: 10 v2: 7

v3: 6 v4: 3

Note that the value of the root tree T mus be the maximum overall. This is also called a max heap to
distinguish it from a min heap, defined in the same way but with symmetric inequalities.

5.1 Restoring the heap property
Often we are given a binary tree T where the heap property is satisfied everywhere except for the value
associated to a specific subtree S ⊂ T . This means that we can turn T into a proper heap by changing
value(S). In such a case, the heap property can also be restored by rearranging the values already stored in
the tree instead of changing them.

Consider first the case in which the value(S) of the subtree S is “too large”, as in the following example:

53

54 CHAPTER 5. HEAPS

broken: value(S) > value(P)

value(L) <= value(S) value(R) <= value(S)

P = parent(S)

Q S

... ... L = left(S) R = right(S)

...

...

...

Assume as precondition that the heap property can be restored by reducing y = value(S) to a certain value
x ≤ y. The heap property contains the following inequalities involving S:

value(D) ≤ value(S) ≤ value(A)

for all descendants D : D ⊂ S and ancestors A : S ⊂ A of the subtree S. The precondition means that there
is a value x such that:

value(D) ≤ x ≤ value(A).

We can in particular choose x = value(P) where P is the parent of S because, also due to the heap property,
value(P) ≤ value(A) for all ancestors A of S.

We conclude that, after replacing value(S) with x = value(P), the heap property is restored. Unfortunately,
this also means that the original value y of S is overwritten. To keep y, we further increase value(P) to be y.
The net effect is to swap x and y, thus keeping all the original values in the tree. However, increasing value(P)
can break the heap property again, this time at P . The key advantage is that the defect is either eliminated
or moved one step closer to the root of the tree. We can then repeat the process recursively until the defect
is eventually eliminated (this certainly occurs when S = T is the root as there are no more parents).

This idea is implemented by the SiftUp algorithm:

SiftUp(S):

• Precondition: S is a subtree of a binary tree T which is a heap up to reducing value(S).
• Postcondition: T is a heap with a permutation of the input values.

1. If empty(parent(S)) stop.
2. if value(parent(S)) ≥ value(S) stop.
3. Swap the values of S and parent(S).
4. Call recursively SiftUp(parent(S)).

Line 1 checks if S is already the root tree, in which case there is nothing to do: the binary tree is already a
heap. Line 2 checks if the value of the parent P is already larger than S. In this case, there is no need to
reduce S because the tree is already a heap. Line 3 swaps the values of S and P , as explained. Finally, line 4
calls SiftUp recursively on the parent P .

For example, consider the following binary tree:

5.1. RESTORING THE HEAP PROPERTY 55

L R

L R

v0: 15

v1: 10 v2: 7

v3: 6 v4: 11

The tree has the heap property except for v4, which is larger than its parent. Hence, SiftUp swaps the values
of v1 and v4, producing the tree

L R

L R

v0: 15

v1: 11 v2: 7

v3: 6 v4: 10

Note that the value of v1 has increased from 10 to 11 due to this exchange. This could in principle break the
heap property for this node, so SiftUp checks the parent v0. In this case the parent has value 15 which is
larger, so the algorithm stops.

The next algorithm does the opposite: if a value in the tree is too small, it sifts it down towards the leaves
until the heap property is restored:

SiftDown(S):

• Precondition: S is a subtree of a binary tree T which is a heap up to increasing value(S).
• Postcondition: T is a heap with the same values as the input tree up to permutation.

1. Let C ← left(S).
2. Let O ← right(S).
3. If empty(C) or if not empty(O) and value(O) ≥ value(C):

1. Set C ← O.
4. If empty(C), stop // both children empty
5. If value(S) ≥ value(C), stop.
6. Swap the values of S and C.
7. Call recursively SiftDown(C).

The algorithm works like SiftUp, but in reverse. The only point of note are lines 1-5: here the algorithm
checks which ones of the two children of S is the largest, and chooses that for a potential value swap with S.
The code is slightly complex due to the fact that none, one or both of the children can be empty.

For example, in the following binary tree node v0 has a value smaller than both children v1 and v2:

56 CHAPTER 5. HEAPS

L R

L R

v0: 1

v1: 10 v2: 7

v3: 6 v4: 3

In this case, SiftDown swaps v0 with v1 because v1 is the largest of the two children, resulting in the modified
tree:

L R

L R

v0: 10

v1: 1 v2: 7

v3: 6 v4: 3

However, now the value of v1 has been reduced from 10 to 1, so SiftDown checks this node. It is indeed
smaller than both children, so the operation is repeated, swapping the values of v1 and v3 (the largest
children):

L R

L R

v0: 10

v1: 6 v2: 7

v3: 1 v4: 3

Now the heap property is fully restored.

5.2 Building a heap
Next, we describe an algorithm for building a heap given an initial set of values. The idea is to start by
arranging the values arbitrarily in a binary tree. For example, given values A = [3, 6, 10, 1, 7], we can arrange
them in the tree

5.2. BUILDING A HEAP 57

L R

L R

v0: 3

v1: 6 v2: 10

v3: 1 v4: 7

The leaves ({v3}, {v4} and {v2}) already form valid heaps of a single element (so they are coloured in green).
Then, one considers intermediate subtrees S such that their left and right children are already heaps and
calls SiftDown(S) to restore the heap property for the entire subtree.

Remark. The precondition for calling SiftDown is satisfied by such trees S. Can you see why?

In the example, one calls SiftDown first on the tree rooted at v1, which results in the structure:

L R

L R

v0: 3

v1: 7 v2: 10

v3: 1 v4: 6

Then one calls SiftDown on the tree rooted at v0 (the whole tree), obtaining:

L R

L R

v0: 10

v1: 7 v2: 3

v3: 1 v4: 6

at which point the entire binary tree is a heap.

A particularly elegant and efficient version of this algorithm is obtained by using the complete binary
tree representation introduced in the previous chapter. Recall that the array A can be interpreted as the
representation of a complete binary tree.

To get the algorithm started, we need to find out which elements in the array forms the leaves of the tree.
Recall that the left child of node i has index 2i + 1. If the array has n = |A| elements, then the largest

58 CHAPTER 5. HEAPS

possible index i that still has a left child must satisfy inequality 2i + 1 ≤ n − 1, or i = ⌊n/2⌋ − 1. In the
example above, n = 5, so the latest non-leaf node is i = 1, meaning that i = 2, 3, 4 are all leaf nodes.

With this information, one simply calls SiftDown on the trees rooted at i, i− 1, . . . , 0 in this order to build
the heap:

BuildHeap(A):

• Precondition: An array A.
• Postcondition: An array A that, interpreted as a complete binary tree, has the heap

property.

1. For i = ⌊|A|/2⌋ − 1, . . . , 0:
1. Interpret the subarray (Ai, . . . , A|A|−1) as a complete binary tree S.
2. Call SiftDown(S).

5.3 HeapSort
BuildHeap can be used to sort an array by removing elements from the root of the heap. Since the largest
element is found at the root, these extracted element are added to the sorted arrow backward, from the end
to the beginning. This is done very efficiently by swapping element A0 with element Ai and then calling
SiftDown on the binary tree given by the subarray (A0, . . . , Ai−1). This idea is codified by the HeapSort
algorithm:

HeapSort(A):

Precondition: An array A.

Postcondition: The array A has the same elements as before, but permuted in non-decreasing
order.

1. Call BuildHeap(A)
2. For i = |A| − 1, . . . , 1:

1. Swap elements A0 and Ai.
2. Interpret the subarray (A0, . . . , Ai−1) as a complete binary tree T .
3. Call SiftDown(T).

5.3.1 Complexity analysis
Next, we analyze the worst case complexity of these algorithms. SiftUp and SiftDown make work proportional
to the height h of the input tree, i.e. Θ(h). If the input tree is complete, then its height is proportional to the
log of the number of nodes n, so the complexity is Θ(log n).

BuildHeap calls SiftDown on every subtree; since there are ⌊n/2⌋ of those and each has at most n elements,
the complexity is bounded by O(n log n). However, this complexity is actually a pessimistic estimate. This
is because most of the intermediate trees are short. Specifically, consider a full tree of height h (thus with
n = 2h+1 − 1 nodes). There are 2h subtrees of height 0, 2h−1 of height 1, and so on, so the total cost of
BuildHeap is:

0 · 2h + 1 · 2h−1 + · · ·+ h · 1 =
h∑

i=0
i2h−i = 2h+1 − h− 2

The last formula can be derived using Z-transform tricks, or simply verified by induction. For the latter, the
formula gives the correct result 2 for h = 1; furthermore, if it is correct for h, it is also correct for h + 1
because:

h+1∑
i=0

i2h+1−i = 2
h∑

i=0
i2h−i + h + 1 = 2(2h+1 − h− 2) + h + 1 = 2h+2 − (h + 1)− 2.

5.3. HEAPSORT 59

Because h is in the order of log n, the complexity of BuildHeap is in the order of 2n− log2 n− 2, i.e., O(n),
which is better than the previous estimate O(n log n).

The cost of HeapSort is given by the cost of BuildHeap O(n) followed by the cost of extracting one element
from the heap at a time. Each time this is done, SiftDown is called from the root of the tree. Starting from
a full binary tree of height h, it means that extracting the first 2h elements incurs cost h, the following 2h−1

elements cost h− 1, etc, so the cost is:

h · 2h + (h− 1) · 2h−1 + · · ·+ 2 =
h∑

i=1
i2i = 2(h− 1)2h + 2

Hence the cost of HeapSort is Θ(n log n). This is unsurprising given that we already know that this is the
lower bound for this class of sorting algorithms.

5.3.2 C++ implementation of heaps
The following C++ implementation demonstrates these concepts.

File heap.hpp:
1 #ifndef __heap__
2 #define __heap__
3

4 #include <cassert>
5 #include <cstdint>
6 #include <functional>
7 #include <utility>
8 #include <vector>
9

10 #include "binary_tree_complete.hpp"
11

12 template <typename V> using default_comparison_t = std::greater<V>;
13

14 template <typename T, typename C> void heap_sift_up(T &&tree, C compare)
15 {
16 auto p = parent(tree);
17 if (!p) return;
18 if (compare(value(tree), value(p))) std::swap(value(tree), value(p));
19 heap_sift_up(p, compare);
20 }
21

22 template <typename T, typename C> void heap_sift_down(T &&tree, C compare)
23 {
24 auto child = left(tree);
25 auto other = right(tree);
26 if (!child || (other && compare(value(other), value(child)))) {
27 child = other;
28 }
29 if (!child) return;
30 if (compare(value(child), value(tree))) {
31 std::swap(value(child), value(tree));
32 }
33 heap_sift_down(child, compare);
34 }
35

36 template <typename V, typename C = default_comparison_t<V>>

60 CHAPTER 5. HEAPS

37 void build_heap(std::vector<V> &storage, C compare = C{})
38 {
39 for (std::intmax_t i = (signed)storage.size() / 2 - 1; i >= 0; --i) {
40 heap_sift_down(CompleteBT<V>{&storage, (size_t)i, storage.size()},
41 compare);
42 }
43 }
44

45 template <typename V, typename C = default_comparison_t<V>>
46 void heap_sort(std::vector<V> &storage, C compare = C{})
47 {
48 build_heap(storage, compare);
49 for (size_t back = storage.size() - 1; back >= 1; --back) {
50 std::swap(storage[0], storage[back]);
51 heap_sift_down(CompleteBT<V>{&storage, 0, back}, compare);
52 }
53 }
54

55 #endif /* __heap__ */

The code closely matches the pseudo-code we have seen above. The various function take a comparison
operator compare as input, which defaults to an instance of std::greater<V>. This operator is used to
compare values in the heap. With the default choice, the functions implement a max heap. Other choices are
possible, for instance to implement a min heap or to make the heap work for custom objects of a type V for
which the default choice std::greater<V> is undefined.

The implementation of heap_sift_up and heap_sift_down are generic, and work for complete or incomplete
binary trees. As for the other binary tree algorithms, the only requirement is that operations parent, left,
right, value and empty are defined. In practice, heap_sift_down can be slightly optimized if one knows
that the tree is complete (which is a very common case for a heap).

build_heap and heap_sort are more specific: they use the CompleteBT class to wrap an input array and
interpret is as a complete binary tree.

The following driver tests the code above.

File heap_driver.hpp:
1 #include "binary_tree.hpp"
2 #include "binary_tree_print.hpp"
3 #include "heap.hpp"
4 #include <utils.hpp>
5

6 #include <iostream>
7 #include <vector>
8

9 int main(int argc, const char *argv[])
10 {
11 auto array =
12 std::vector<float>{1, 19, 2, 9, 12, 18, 4, 8, 5, 6,
13 17, 10, 11, 14, 16, 15, 7, 3, 13, 20};
14

15 std::cout << "Before building the heap: ";
16 print(array);
17 print_binary_tree(CompleteBT<float>{&array});
18

5.4. PRIORITY QUEUES 61

19 build_heap(array);
20

21 std::cout << "\nAfter building the heap: ";
22 print(array);
23 print_binary_tree(CompleteBT<float>{&array});
24

25 heap_sort(array);
26 print(array, "\nArray after heapsort: ");
27

28 return 0;
29 }

Before building the heap: [1, 19, 2, 9, 12, 18, 4, 8, 5, 6, 17, 10, 11, 14, 16, 15, 7, 3, 13, 20]
1 --------------------v
19 -----------v 2 ------v
9 -----v 12 -v 18 -v 4 --v
8 --v 5 -v 6 17 10 11 14 16
15 7 3 13 20

After building the heap: [20, 19, 18, 15, 17, 11, 16, 9, 13, 12, 1, 10, 2, 14, 4, 8, 7, 3, 5, 6]
20 -----------------v
19 ----------v 18 ----v
15 ---v 17 -v 11 -v 16 -v
9 -v 13 -v 12 1 10 2 14 4
8 7 3 5 6

Array after heapsort: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

5.4 Priority queues
Heaps are often used to implement priority queues. A priority queue is a container whose elements have an
associated priority. The queue implements two operations with high efficiency: adding an element to the
queue (regardless of its priority) and removing the highest priority element from the queue.

We implement a priority queue as a structure Q with fields:

• Q.A is an array with storage for the queue elements.
• Q.size is the number of elements currently in the queue.

Enqueuing elements is similar to the BuildHeap algorithm above:

PriorityEnqueue(Q, x):

1. Let i← Q.size
2. Set Q.Ai ← x
3. Interpret (Q.A0, . . . , Q.Ai) as a complete binary tree T and let S be the subtree rooted at Ai.
4. Call SiftUp(S).
5. Set Q.size← i + 1.

Dequeuing elements is instead similar to HeapSort:

PriorityDequeue(Q, x):

1. Let i← Q.size
2. Swap A0 and Ai.
3. Interpret (Q.A0, . . . , Q.Ai−1) as a complete binary tree T .
4. Call SiftDown(T).

62 CHAPTER 5. HEAPS

5. Set Q.size← i− 1.
6. Return Ai.

5.4.1 C++ implementation of a priority queue
The following priority_queue.hpp file defines the priority queue operations using a vector for backing
storage and the heap functions defined above.

File priority_queue.hpp:
1 #ifndef __priority_queue__
2 #define __priority_queue__
3

4 #include "heap.hpp"
5 #include <vector>
6

7 template <typename V, typename C = default_comparison_t<V>>
8 void priority_dequeue(std::vector<V> &storage, C compare = C{})
9 {

10 assert(storage.size() > 0);
11 std::iter_swap(begin(storage), end(storage) - 1);
12 storage.pop_back();
13 heap_sift_down(CompleteBT<V>{&storage, 0, storage.size()},
14 compare);
15 }
16

17 template <typename V, typename C = default_comparison_t<V>>
18 void priority_enqueue(std::vector<V> &storage, V value,
19 C compare = C{})
20 {
21 storage.push_back(std::move(value));
22 heap_sift_up(
23 CompleteBT<V>{&storage, storage.size() - 1, storage.size()},
24 compare);
25 }
26

27 #endif /* __priority_queue__ */

The following test driver tests the priority queue.

File priority_queue_driver.cpp:
1 #include "priority_queue.hpp"
2 #include <utils.hpp>
3

4 #include <iostream>
5

6 int main(int argc, char **argv)
7 {
8 std::vector<int> queue;
9

10 for (int x : {15, 9, 3, 23}) {
11 std::cout << "Enqueued " << x << ' ';
12 priority_enqueue(queue, x);
13 print(queue);
14 }

5.4. PRIORITY QUEUES 63

15

16 std::cout << "Dequeued " << queue[0] << ' ';
17 priority_dequeue(queue);
18 print(queue);
19

20 std::cout << "Dequeued " << queue[0] << ' ';
21 priority_dequeue(queue);
22 print(queue);
23

24 for (int x : {2, 1}) {
25 std::cout << "Enqueued " << x << ' ';
26 priority_enqueue(queue, x);
27 print(queue);
28 }
29

30 while (!queue.empty()) {
31 std::cout << "Dequeued " << queue[0] << ' ';
32 priority_dequeue(queue);
33 print(queue);
34 }
35

36 return 0;
37 }

Enqueued 15 [15]
Enqueued 9 [15, 9]
Enqueued 3 [15, 9, 3]
Enqueued 23 [23, 15, 3, 9]
Dequeued 23 [15, 9, 3]
Dequeued 15 [9, 3]
Enqueued 2 [9, 3, 2]
Enqueued 1 [9, 3, 2, 1]
Dequeued 9 [3, 1, 2]
Dequeued 3 [2, 1]
Dequeued 2 [1]
Dequeued 1 []

64 CHAPTER 5. HEAPS

Chapter 6

Hashing

So far we have focused on data structures that allow to store and retrieve elements in a specified order, or by
priority. Often, however, one needs to access elements in a random order, based on identifiers.

Arrays are an example of a random access data structure because they allow to access any element in constant
time O(1) based on their index. The data identifiers in arrays are the integers from 0 to the array size minus
1. In this chapter, we will introduce data structures that allow to access data in a similar manner, but based
on identifiers of arbitrary types (e.g., character strings).

The key concept is the one of hash table. A hash table is a container H that allows inserting and retrieving
elements in arbitrary order based on generic identifiers or keys. Specifically, H has two operations:

• insert(H, k, v) stores value v in the hash table H for key k.
• retrieve(H, k) returns the value v associated to key k if any such association exists, or NIL otherwise.

Next, we will look at how a hash table can be implemented via a particular technique called chaining and
how the latter can be significantly accelerated by using hash functions.

6.1 Hashing via chaining
Chaining implements a hash table H as a linked list. Each node of the list stores a key-value pair ⟨k, v⟩.
To insert a new element ⟨k, v⟩, chaining first checks if the list already contains a node ⟨k, ⋆⟩, where ⋆ is a
placeholder that stands for “any value”. If so, the algorithm updates ⋆ to be v; otherwise, the algorithm
inserts a new node storing ⟨k, v⟩ at the beginning of the list. We call this procedure ChainInsert:

ChainInsert(L, k, v) :

1. N ← ListFindPredecessor(L, ⟨k, ⋆⟩)
2. If N = NIL, then:

1. Call ListInsertAfer(L, ⟨k, v⟩).
3. Else:

1. Set N.next.value← ⟨k, v⟩.

To retrieve the value of key k from the hash table, chaining searches the list for a corresponding node ⟨k, v⟩,
and returns v if such a node is found, or NIL otherwise. We call this procedure ChainRetrieve:

ChainRetrieve(L, k) :

1. N ← ListFindPredecessor(L, ⟨k, ⋆⟩)
2. If N = NIL, then:

1. Return NIL.
3. Else:

1. Let ⟨k, v⟩ ← N.next.value.

65

66 CHAPTER 6. HASHING

2. Return v.

The problem with chaining is that inserting and retrieving elements has worst case complexity Θ(n), where n
is the number of elements stored in the table. This is because, in the worst case, the list must be scanned from
start to finish for both insertion and retrieval of keys. By comparison, arrays allow insertion and retrieval in
Θ(1) time!

Chaining can be accelerated substantially by using a large number of short lists, each responsible for storing
a given subset of possible keys (this technique is known as “separate chaining”). Each chain corresponds to a
slot i in the table, and there are m such slots, numbered from 0 to m− 1.

Given a key k, the algorithm needs to decide which slot is responsible for storing it, and must to do so quickly,
in constant Θ(1) time. This is usually achieved by means of a hash function h. The hash function takes as
input the key k and returns as output the index s = h(k) of the slot to use.

Given the hash function h, the hash table H can be implemented as a data structure with a field H.A, which
is simply an array containing the m lists. Insertion uses the HashInsert algorithm:

HashInsert(H, k, v) :

1. Let s← h(k).
2. Let L← H.A[s].
3. Call ChainInsert(L, k, v).

Retrieving an element uses the HashRetrieve algorithm:

HashRetrieve(L, k) :

1. Let s← h(k).
2. Let L← H.A[s].
3. Return ChainRetrieve(L, k).

A good hash function distributes keys to slots as uniformly as possible. In this manner, if there are m slots
and n elements in the table, we can expect that, on average, each list will contain n/m elements, therefore
accelerating insertion and retrieval by a factor of m compared to using a single list.

However, in the worst case it may occur that all the keys we wish to store in the table are hashed by h to
the same slot. Hence, the worst case complexity is still Θ(n). Next, we show that the average the cost is
much closer to the ideal rather than the worst case.

6.2 Average cost analysis of hashing
In this part, we analyse the average cost of retrieving elements from a hash table H. This requires making a
statistical assumption on how the data is inserted into the table before it is retrieved from it:

Simple uniform hashing assumption (SUHA) (definition)

Let h : K → {0, . . . , m− 1} be a hash function mapping keys k ∈ K to m slots. We assume that:

1. Each time a key k is inserted in the table, it is selected at random from a fixed distribution
p(k), independently of previously-inserted keys.

2. The probability that a key is hashed to any of the slots is uniform, i.e., P [h(k) = s] = 1/m for
all slots s = 0, . . . , m− 1.

Remark: SUHA states that the slot distribution P [h(k) = s] is uniform, not that the key distribution p(k) is.

We show below that the cost of retrieving elements from a hash table is characterized by its load factor:

Load factor (definition)

The load factor of a hash table H containing n elements and m slots is α = n/m.

6.3. C++ IMPLEMENTATION OF HASH TABLES 67

To analyze the cost of retrieving a key from the hash table, we need to distinguish two cases: whether the
retrieved key is contained in the table or not.

First, we analyse the cost of retrieving a key k that is not contained in the hash table. Intuitively, the cost
incurred is proportional to the average length of the chains in the table, i.e. the load factor. This is captured
by the following theorem:

Expected cost of retrieving a missing key (theorem H1)

Under the SUHA, averaging over possible hash tables H and retrieved keys k, the expected
number of list nodes visited by HashRetrieve(H, k) for a key k not in the table is 1 + α, where α
is the load factor.

Proof. Executing HashRetrieve(H, k) visits 1 + ni nodes, where i = h(k) is the slot selected by key k and
ni is the length of the list stored at that slot. The plus one accounts for visiting the sentinel node at the
beginning of the list.

Suppose that the hash table contains n keys in total and let us find the expected value E[ni|n] of the length
of the i-th list given that the total number of keys is k. Due to the fact that the sum of the list lengths must
be n and due to the linearity of expectation, we have:

n = E[n0 + n1 + · · ·+ nm−1|n] = E[n0|n] + · · ·+ E[nm−1|n].

Due to the SUHA, all slots are used equally likely, which means that the marginal expectations E[ni|n] must
be the same for all slots i. We thus conclude that mE[ni|n] = n, so that E[1 + ni|n] = 1 + n/m = 1 + α.
Q.E.D.

Next, we look at the cost of retrieving a key that is actually contained in the table. This case is slightly different
from the one above because, on average, the key will be found by visiting only half of the corresponding list;
therefore the number of nodes visited should be slightly less than before.

Expected average cost of retrieving an existing key (theorem H2)

Under the SUHA, the expected number of list nodes visited by HashRetrieve(H, k) averaged
overall all possible hash tables H of size n and keys k contained in them is 1 + α/2− α/2n.

The proof is a little complex and is given as optional material at the end of the chapter.

The message of these two theorems is that, as long as we keep the load α small, we can expect the table
operations to run efficiently, in time Θ(1 + α). This depends on the table being used according to an “average”
pattern, captured by the SUHA and, for the case of retrieving a key that exists in the table, by the fact the
we are equally likely to retrieve any of the existing keys.

6.3 C++ implementation of hash tables
Next, we look at a possible implementation of the hash table in C++.

File hash.hpp:
1 #ifndef __hash__
2 #define __hash__
3

4 #include <cassert>
5 #include <iostream>
6 #include <limits>
7 #include <vector>
8

9 #include "../part-1/list.hpp"
10

11 template <typename K, typename V, typename H> class HashTable

68 CHAPTER 6. HASHING

12 {
13 public:
14 HashTable(size_t num_chains) : _table{num_chains} {}
15

16 void insert(const K &key, const V &value)
17 {
18 size_t slot = _get_slot(key);
19 Node<KeyValuePair> *node = _find_key(slot, key);
20 if (!node) {
21 list_insert_after(&_table[slot], {key, value});
22 } else {
23 node->next->value.value = value;
24 }
25 }
26

27 V *get(const K &key)
28 {
29 size_t slot = _get_slot(key);
30 Node<KeyValuePair> *node = _find_key(slot, key);
31 if (!node) { return nullptr; }
32 return &node->next->value.value;
33 }
34

35 void print(bool details = false) const
36 {
37 size_t min = std::numeric_limits<size_t>::max(), max = 0, average = 0;
38 for (size_t slot = 0; slot < _table.size(); ++slot) {
39 if (details) { std::cout << "Slot " << slot << " contains"; }
40 size_t count = 0;
41 for (Node<KeyValuePair> *node = _table[slot].next.get(); node;
42 node = node->next.get()) {
43 if (details) { std::cout << " '" << node->value.key << '\''; }
44 count++;
45 }
46 if (details) { std::cout << " (" << count << ")\n"; }
47 max = std::max(count, max);
48 min = std::min(count, min);
49 average += count;
50 }
51 std::cout << "Slot sizes: min: " << min;
52 std::cout << ", max: " << max;
53 std::cout << ", average: " << float(average) / _table.size() << '\n';
54 }
55

56 private:
57 struct KeyValuePair {
58 K key;
59 V value;
60 };
61

62 std::vector<Node<KeyValuePair>> _table;
63

64 size_t _get_slot(const K &key) const { return H{}(key) % _table.size(); }

6.3. C++ IMPLEMENTATION OF HASH TABLES 69

65

66 Node<KeyValuePair> *_find_key(size_t slot, const K &key)
67 {
68 auto match = [&](const KeyValuePair &pair) { return pair.key == key; };
69 return list_find_predecessor(&_table[slot], match);
70 }
71 };
72

73 #endif // __hash__

The HastTable template is parameterized in the key type K, the value type V, the number of slots m,
and the hash function policy H. The key-value pairs stored in the lists are represented by the structure
HashTable::Entry. The hash function policy H is an object type that specifies the operation computed
to hash keys and is further discussed below. The policy object is used in the Hash<K,V,m,H>::get_slot
member function to compute the slot for a given key.

Chaining uses the list.hpp modules we have introduced early in the course. list_find_predecessor is
used to find a key-value pair in the list. Nodes in the list are of type Node<Entry> where Entry is a structure
storing a key-value pair. list_find_predecessor is called with a suitable comparison function match which
check for key equality. match is defined as a lambda function inside of Hash<K,V,m,H>::find_entry.

The following driver demonstrates using this class.

File hash_driver.cpp:
1 #include "hash.hpp"
2 #include <iostream>
3 #include <string>
4

5 constexpr size_t num_chains = 31;
6

7 struct HashFunction {
8 size_t operator()(const std::string &str)
9 {

10 size_t value = 0;
11 for (auto c : str) { value += c; }
12 return value % num_chains;
13 }
14 };
15

16 int main(int agrc, char **argv)
17 {
18 HashTable<std::string, int, HashFunction> hash_table{num_chains};
19

20 int value = 0;
21 for (auto key : {"Apple", "Apricots", "Avocado", "Banana", "Blackberries",
22 "Blackcurrant", "Blueberries", "Breadfruit", "Cantaloupe",
23 "Carambola", "Cherimoya", "Cherries", "Clementine"}) {
24 hash_table.insert(key, value++);
25 }
26

27 hash_table.print();
28

29 std::cout << "'Carambola' is the " << *hash_table.get("Carambola")
30 << "-th fruit\n";
31

https://en.wikipedia.org/wiki/Modern_C%2B%2B_Design

70 CHAPTER 6. HASHING

32 std::cout << "Retrieving 'Beans' results in the pointer value "
33 << hash_table.get("Beans") << "\n";
34 return 0;
35 }

Slot sizes: min: 0, max: 2, average: 0.419355
'Carambola' is the 9-th fruit
Retrieving 'Beans' results in the pointer value 0x0

The HashFunction policy object is just a structure with no data member whose only purpose is to implement
the hash function as its operator(). Given a key key, the hash function can then be called by instantiating
the object and calling it, as in HashFunction{}(k). These “policy” objects are a standard C++ idiom used
to parameterize the behaviour of template classes.

6.4 Designing hash functions
We now consider the design of the hash functions h. The goal of a hash function is to spread keys to slots in
the most uniform manner possible.

While an optimal design depends on the nature and distribution of the keys k, we can often resort to simple
heuristics.

A common strategy starts by interpreting the keys k as a natural number. A way to do so is to take
the binary representation of k (i.e., the sequence of bytes that are used to store k in the memory of the
computer) and read that as a (usually large) natural number in binary notation. If k is a string c0c1 . . . cn−1
of ASCII characters, this number is given by k =

∑n−1
i=0 256ici. In the following, we thus assume that keys

are (potentially large) natural numbers.

While the input key k can ber an arbitrary number, the hash function must return a slot index in the range
[0, m− 1]. A straightforward way of achieving this result is to define:

h(k) = k mod m.

Recall that the mod m operator computes the reminder of the division by m, which can be any number in
the range 0 to m− 1.

This construction, however, does not work well for certain values of m. For instance, if we choose m = 28 = 256
in the example above, we obtain h(c0c1 . . . cn−1) = c0, meaning that all strings that begin with the same
character hash to the same slot. Unless all characters are equally likely, and this is almost never the case,
then this hash function is not going to work well.

In general, we would like the result of the hash function to at least depends on all the bits, or binary digits,
of the integer k. One way to achieve this is to choose m to be a prime number other than 2. To see why,
consider a pair of keys k′ = k that differ only in the i-th bit. Without loss of generality, we can thus assume
that k′ = k + 2i. If we use the definition above for the hash function, we must have

k′ = q′m + h(k′) = k + 2i = qm + h(k) + 2i

If the hashes h(k) = h(k′) are the same, then we must have:

q′m = qm + 2i ⇒ (q′ − q)m = 2i ⇒ m|2i

where the last symbol means that “m divides 2i”. The latter is of course impossible since m is a prime number
other than 2 and 2i has 2 as the sole prime factor. This means that flipping any bit in the key k will cause
the hash value to change.

Generally, a good choice for m is to pick a prime number not too close to a power of two.

If changing m is not an option, we can consider other kinds of hash functions, such as the multiplication
method. However, discussion those is beyond the scope of these notes.

6.5. PROOF OF THEOREM H2 (OPTIONAL) 71

6.5 Proof of theorem H2 (optional)
We prove theorem H2. The proof is a slight modification of the original proof provided by Donald Knuth.

Consider the cost c(k1, . . . , kn, i) of retrieving the i-th key ki from the hash table H obtained by inserting keys
(k1, . . . , kn) in this order. We need to compute the expectation of this cost over all possible key sequences
and which one of them is retrieved:

C = 1
n

n∑
i=1

∫
c(k1, . . . , kn, i)p(k1) · · · p(kn)dk1 · · · dkn

In order to simplify this calculation, we note that the specific values of the keys do not really matter. In fact,
the cost c is the same as long as the sequence of slots si = h(ki) activated by the keys is the same:

(s1, . . . , sn) = (s′
1, . . . , s′

n) ⇒ c(k1, . . . , kn, i) = c(k′
1, . . . , k′

n, i)

Hence, instead of averaging over key values, we can average over possible slot sequences. There are mn

possible sequences of slots (s1, s2, . . . , sn) ∈ [0, m − 1]n and, because of the SUHA, they are all equally
probable1. We conclude that the cost can be rewritten as an average over such sequences:

C = 1
n

n∑
i=1

1
mn

∑
(s1,s2,...,sn)∈[0,m−1]n

c(s1, . . . , sn, i).

The cost of retrieving key ki is given by

c(s1, . . . , sn, i) = 1 + r

where r is the number of keys that are found in the chain in slot si before the retrieved key ki itself. Noting
that ChainInsert always adds new keys at the beginning of a chain, this is the number of keys added to the
table after ki that hash to the same slot; namely, r is the number of slots (si+1, . . . , sn) that are equal to si.

Hence, for a given value of i and r, we must count for how many of the mn slot sequences (s1, . . . , sn) we
have c(s1, . . . , sn, i) = 1 + r. In order to obtain a sequence with this particular value for the cost, we can
choose the first i slots s1, . . . , si arbitrarily, but for the remaining slots sj , j = i + 1, . . . , n, exactly r of them
must be the same as si (i.e., sj = si) and the other n− i− r ones can only take m− 1 different values sj ̸= si.
Schematically, we have the following options for choosing the slot sequence:

s1, . . . , si︸ ︷︷ ︸
mi options

, si+1, . . . , sn︸ ︷︷ ︸
(n−i

r)(m−1)n−i−r options

Because all such sequences have the same cost 1 + r, we can rearrange the sum above and sum over all
possible values of r obtaining the expression:

C = 1
n

n∑
i=1

1
mn

n−i∑
r=0

mi

(
n− i

r

)
(m− 1)n−i−r(1 + r).

1This is a slight approximation: in the construction above, keys are assumed to be all distinct — if two identical keys are
sampled, we need to discard the second occurrence and sample another one, meaning that keys cannot be assumed to be exactly
i.i.d. This in turn makes certain sequences of slots to be slightly more probable than others. We ignore this effect as, in practice,
the space of keys is usually very large, so the probability of sampling two identical keys is very small.

72 CHAPTER 6. HASHING

Computing this sum requires a little work. First, we consider the constant 1 in the factor 1 + r:

C1 = 1
n

n∑
i=1

1
mn

n−i∑
r=0

mi

(
n− i

r

)
(m− 1)n−i−r

= 1
n

n∑
i=1

mi

mn

n−i∑
r=0

(
n− i

r

)
1r(m− 1)n−i−r (binomial expansion)

= 1
n

n∑
i=1

mi

mn
(1 + m− 1)n−i

= 1
n

n∑
i=1

mi

mn
mn−i = 1.

The fact that this sum is equal to 1 is not a chance: it is the result of averaging the constant 1 over all
sequences. The fact that the result is 1 provides a verification of the correctness of the formula above.

Next, we compute the r part of 1 + r. For this, we use a few Z-transform tricks that should be familiar to you:

C2 = 1
n

n∑
i=1

1
mn

n−i∑
r=0

mi

(
n− i

r

)
(m− 1)n−i−rr

= 1
n

n∑
i=1

mi

mn

n−i∑
r=0

(
n− i

r

)
zn−i+1rz−r−1 for z = m− 1

= 1
n

n∑
i=1

mi

mn
zn−i+1

n−i∑
r=0

(
n− i

r

)
d

dz

[
−z−r

]
(derivative trick)

= 1
n

n∑
i=1

mi

mn
zn−i+1 d

dz

[
−

n−i∑
r=0

(
n− i

r

)
z−r

]

= 1
n

n∑
i=1

mi

mn
zn−i+1 d

dz

[
−

n−i∑
r=0

(
n− i

r

)
1n−i−r(z−1)r

]
(binomial expansion)

= 1
n

n∑
i=1

mi

mn
zn−i+1 d

dz
[−(1 + z−1)n−i]

= 1
n

n∑
i=1

mi

mn
(n− i)zn−i+1(1 + z−1)n−i−1z−2

= 1
n

n∑
i=1

mi

mn
(n− i)(z + 1)n−i−1 = 1

n

n∑
i=1

mn

mn
(n− i)m−1

= n

m
− 1

mn

n∑
i=1

i = n

m
− 1

mn

n(n + 1)
2

= α

2 −
α

2n
.

We conclude the proof by noting that the total average cost is C = C1 + C2. Q.E.D.

Chapter 7

Graphs

This chapter introduces the concept of graph, one of the most important data structure in computer science.
A graph describes the connections (edges) between entities (vertices). As an example, the vertices can be
geographic locations, and the edges roads between them.

In this chapter we introduce basic definitions and notations for graphs. In the next one, we will look at
shortest paths algorithms, which are used in a wide spectrum of applications.

7.1 Formal definition of graph
A directed graph G = (V, E), also called a digraph or simply a graph, is a finite set of vertices V together
with a set of edges E ⊂ V × V . An edge e = (u, v), which is a pair of vertices, is visualized as arrow u 7→ v
connecting vertex u to v. By analogy with an arrow, the first vertex u is called the tail of the edge the second
vertex v is called its head. It is possible for the tail and head to coincide, i.e., (u, u) is a valid edge in a
directed graph.

For example, the following figure shows a graph with four vertices V = {v1, v2, v3, v4}:

v1

v2

v3 v4

The set of edges of this graph is E = {(v1, v2), (v2, v3), (v3, v1), (v3, v4), (v4, v4)}.

An undirected graph is a graph where the edges E do not have an orientation. In this case, edges are
represented as set of two vertices {v1, v2} instead of as a pair. This is because the order of the elements
in a set is irrelevant, so that {v1, v2} = {v2, v1}. Edges whose head and tail coincide are not allowed in an
undirected graph.

The following figure shows an undirected graph:

v1

v2

v3 v4

In the rest of the notes, we will mainly focus on directed graphs.

73

74 CHAPTER 7. GRAPHS

7.2 Representing graphs using adjacency matrices and lists
A simple representation of a graph G that can be used in an algorithm is its adjacency matrix A. To build
the adjacency matrix, one enumerates the vertices of the graph, so that each vertex v ∈ V is identified with
a number in the range 1 to V . Then, the entry Auv of the adjacency matrix is set to 1 if there is an edge
(u, v) ∈ E and to 0 otherwise, resulting in a |V | × |V | binary matrix.

For example, the adjacency matrix for the directed graph given above is given by:

A =

0 1 0 0
0 0 1 0
1 0 0 1
0 0 0 1

 .

An undirected graph can be represented by a symmetric adjacency matrix A (i.e., A = A⊤). Since self-edges
are not allowed, there are zeros along the diagonal. For example, the adjacency matrix for the undirected
graph above is given by:

A =

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

 .

Adjacency matrices are inefficient if the graph is sparse. A graph is considered sparse if the number of edges
|E| is a small fraction of the theoretical maximum |V |2 (in the analysis of an algorithm, we would characterise
a sparse graph by stating that the number of edge is linear in the number of vertices, i.e., |E| = O(|V |)). For
such a graph, a more efficient representation is given by the adjacency list: a list of lists, each specifying
the edges outgoing from a given vertex. For example, the adjacency list for the directed graph above is:

L = [[2], [3], [1, 4], [4]]

This states that the first vertex v1 has an edge connecting it to v2, the second vertex v2 has an edge connecting
it to v3, the third vertex v3 has an edge connecting it to v1 and another connecting it to v4, and the fourt
vertex v4 has an edge connecting it to itself.

7.3 Weighted graphs
A weighted graph (G, w) is a graph with weights w(e), e ∈ E associated to its edges, as in the following
example:

3 2

6

2v1

v2

v3 v4

We can use a variant of the adjacency matrix A to represent a weighted graph. Specifically, we introduce
a weight matrix W such that Wuv = w(u, v) with the convention that w(u, v) = +∞ if there is no edge
connecting u to v. In the example above, the weight matrix is given by:

W =

∞ 3 6 ∞
∞ ∞ 2 ∞
∞ ∞ ∞ 2
∞ ∞ ∞ ∞

 .

The adjacency list can also be modified to represent a weighted graph. In this case, each element in the list
stores the head of an edge as well as its weight. For the graph above, the adjacency list is:

L = [[(2, 3)], [(3, 2)], [(1, 6), (4, 2)], []]

7.4. PATHS 75

7.4 Paths
A path in a directed graph G = (V, E) is a sequence of vertices p = (v1, . . . , vn) such that (vi, vi+1) ∈ E is
an edge for each i = 1, . . . , n− 1.

The length of the path is the number of edges in the path and is thus equal to n− 1 (the number of vertices
minus one). A path of length zero is a sequence (v) comprising a single vertex.

The first vertex v1 of a path is called the source and the last vertex vn is called the destination. We say
that the path connects the source v1 to the destination vn.

The weight of a path p = (v1, . . . , vn) in a weighted graph (G, w) is the sum of the weights of the edges
appearing in the path:

w(p) =
n−1∑
i=1

w(vi, vi+1).

For example, in the figure below the path p = (v1, v3, v4) connects v1 to v4 and its weight is 7.

3 2

6

2v1

v2

v3 v4

Note that, if an edge is included more than once in a path, its weight is summed a corresponding number of
times.

We say that a path is simple if no vertex is repeated. I.e., a simple path never visits the same vertex more
than once.

If the destination of a path p′ coincides with the source of a path p′′, we can concatenate p′′ to p’, obtaining
a composite path p. We denote this operation by using the circled plus symbol p = p′ ⊕ p′′. For example,
(v1, v2, v3, v4) = (v1, v2, v3)⊕ (v3, v4).

If p = p′ ⊕ p′′ ⊕ p′′, then we say that paths p′, p′′ and p′′′ are subpaths of p.

7.5 Cycles
In a directed graph, a cycle is a path of length greater than zero where the source and destination coincide.
For example, the path (v1, v2, v3, v1) in the following graph is a cycle:

v1

v2

v3 v4

Another cycle is (v4, v4):

v1

v2

v3 v4

A cycle is simple if only the first and last vertex repeat. Hence, the two previous examples of cycles are
simple.

76 CHAPTER 7. GRAPHS

Note that the path (v4, v4) is not the same as the path (v4). The first one is a cycle, but the latter is not,
despite the fact that source and destination coincide in both cases. The reason is that path (v4) has a length
of zero.

7.6 C++ implementation
We consider two possible implementation of weighted graphs: via an weighed adjacency matrix and as a
weighted adjacency list.

The weighted adjacency matrix Graph is implemented as a vector of vectors of floats, each specifying a row of
the matrix.

The weighted adjacency list SparseGraph is also a vector of vectors, but each inner vector specifies a list of
edges connecting the corresponding vertex to other vertices in the graph, each given by a structure hop_t,
specifying a destination vertex and a weight.

These ideas are captured by the following example implementation:
1 #ifndef __graph_hpp__
2 #define __graph_hpp__
3

4 #include <iostream>
5 #include <limits>
6 #include <vector>
7

8 // Weighted adjacency matrix representation
9 using Graph = std::vector<std::vector<float>>;

10

11 void print_graph(const Graph &graph, bool as_url = false);
12

13 // Weighted adjacency list representation
14 struct hop_t {
15 float weight;
16 int vertex;
17 };
18

19 inline bool operator<(const hop_t &lhs, const hop_t &rhs)
20 {
21 return lhs.weight < rhs.weight;
22 };
23

24 using SparseGraph = std::vector<std::vector<hop_t>>;
25

26 void print_graph(const SparseGraph &graph, bool as_url = false);
27

28 inline std::ostream &operator<<(std::ostream &os, const hop_t &hop)
29 {
30 return os << "(" << hop.weight << "," << hop.vertex << ')';
31 }
32

33 constexpr auto inf = std::numeric_limits<float>::infinity();
34

35 // Test graphs
36 extern const Graph test_graph;
37 extern const SparseGraph sparse_test_graph;

7.6. C++ IMPLEMENTATION 77

38

39 #endif //__graph_hpp__

The code also defines the shorthand inf to denote the float value infinity.

The code provides two overloads of the function print_graph for printing Graph and SparseGraph, respec-
tively. print_graph converts the input graph into the Dot format, which can be used to visualize the graph
using the Graphviz software. Passing true as second argument of print_graph outputs an URL that can
be pasted in a Internet browser to visualize the graph. Finally, the module graph.hpp also declares two
functions to test the code provided: test_graph and sparse_test_graph.

The following test driver tests this code to display the test graphs:
1 #include "graph.hpp"
2

3 int main(int argc, const char *argv[])
4 {
5 print_graph(test_graph);
6 print_graph(sparse_test_graph);
7 return 0;
8 }

digraph G {
0 -> 1 [label= 4];
0 -> 7 [label= 8];
1 -> 7 [label= 11];
2 -> 5 [label= 4];
2 -> 8 [label= 2];
3 -> 4 [label= 9];
3 -> 5 [label= 14];
4 -> 5 [label= 10];
5 -> 6 [label= 2];
6 -> 3 [label= 3];
6 -> 7 [label= 1];
6 -> 8 [label= 6];
7 -> 8 [label= 7];

}

digraph G {
0 -> 1 [label= 4];
0 -> 7 [label= 8];
1 -> 7 [label= 11];
2 -> 5 [label= 4];
2 -> 8 [label= 2];
3 -> 4 [label= 9];
3 -> 5 [label= 14];
4 -> 5 [label= 10];
5 -> 6 [label= 2];
6 -> 3 [label= 3];
6 -> 7 [label= 1];
6 -> 8 [label= 6];
7 -> 8 [label= 7];

}

The output can be copied and pasted into this Graphviz online for visualization (you can also try to use this
link which copies this example graph into Graphviz online and shows it to you).

https://graphviz.org/docs/layouts/dot/
https://dreampuf.github.io/GraphvizOnline/
https://dreampuf.github.io/GraphvizOnline/#%64%69%67%72%61%70%68%20%47%20%7b%0a%20%20%20%20%30%20%2d%3e%20%31%20%5b%6c%61%62%65%6c%3d%20%34%5d%3b%0a%20%20%20%20%30%20%2d%3e%20%37%20%5b%6c%61%62%65%6c%3d%20%38%5d%3b%0a%20%20%20%20%31%20%2d%3e%20%37%20%5b%6c%61%62%65%6c%3d%20%31%31%5d%3b%0a%20%20%20%20%32%20%2d%3e%20%35%20%5b%6c%61%62%65%6c%3d%20%34%5d%3b%0a%20%20%20%20%32%20%2d%3e%20%38%20%5b%6c%61%62%65%6c%3d%20%32%5d%3b%0a%20%20%20%20%33%20%2d%3e%20%34%20%5b%6c%61%62%65%6c%3d%20%39%5d%3b%0a%20%20%20%20%33%20%2d%3e%20%35%20%5b%6c%61%62%65%6c%3d%20%31%34%5d%3b%0a%20%20%20%20%34%20%2d%3e%20%35%20%5b%6c%61%62%65%6c%3d%20%31%30%5d%3b%0a%20%20%20%20%35%20%2d%3e%20%36%20%5b%6c%61%62%65%6c%3d%20%32%5d%3b%0a%20%20%20%20%36%20%2d%3e%20%33%20%5b%6c%61%62%65%6c%3d%20%33%5d%3b%0a%20%20%20%20%36%20%2d%3e%20%37%20%5b%6c%61%62%65%6c%3d%20%31%5d%3b%0a%20%20%20%20%36%20%2d%3e%20%38%20%5b%6c%61%62%65%6c%3d%20%36%5d%3b%0a%20%20%20%20%37%20%2d%3e%20%38%20%5b%6c%61%62%65%6c%3d%20%37%5d%3b%0a%7d%0a
https://dreampuf.github.io/GraphvizOnline/#%64%69%67%72%61%70%68%20%47%20%7b%0a%20%20%20%20%30%20%2d%3e%20%31%20%5b%6c%61%62%65%6c%3d%20%34%5d%3b%0a%20%20%20%20%30%20%2d%3e%20%37%20%5b%6c%61%62%65%6c%3d%20%38%5d%3b%0a%20%20%20%20%31%20%2d%3e%20%37%20%5b%6c%61%62%65%6c%3d%20%31%31%5d%3b%0a%20%20%20%20%32%20%2d%3e%20%35%20%5b%6c%61%62%65%6c%3d%20%34%5d%3b%0a%20%20%20%20%32%20%2d%3e%20%38%20%5b%6c%61%62%65%6c%3d%20%32%5d%3b%0a%20%20%20%20%33%20%2d%3e%20%34%20%5b%6c%61%62%65%6c%3d%20%39%5d%3b%0a%20%20%20%20%33%20%2d%3e%20%35%20%5b%6c%61%62%65%6c%3d%20%31%34%5d%3b%0a%20%20%20%20%34%20%2d%3e%20%35%20%5b%6c%61%62%65%6c%3d%20%31%30%5d%3b%0a%20%20%20%20%35%20%2d%3e%20%36%20%5b%6c%61%62%65%6c%3d%20%32%5d%3b%0a%20%20%20%20%36%20%2d%3e%20%33%20%5b%6c%61%62%65%6c%3d%20%33%5d%3b%0a%20%20%20%20%36%20%2d%3e%20%37%20%5b%6c%61%62%65%6c%3d%20%31%5d%3b%0a%20%20%20%20%36%20%2d%3e%20%38%20%5b%6c%61%62%65%6c%3d%20%36%5d%3b%0a%20%20%20%20%37%20%2d%3e%20%38%20%5b%6c%61%62%65%6c%3d%20%37%5d%3b%0a%7d%0a

78 CHAPTER 7. GRAPHS

If you are curious, the definition file graph.cpp is as follows:
1 #include "graph.hpp"
2

3 #include <cmath>
4 #include <iomanip>
5 #include <iostream>
6 #include <sstream>
7

8 const Graph test_graph =
9 Graph{{inf , 4 , inf, inf , inf, inf , inf, 8 , inf} ,

10 {inf , inf, inf, inf , inf, inf , inf, 11 , inf} ,
11 {inf , inf, inf, inf , inf, 4 , inf, inf, 2} ,
12 {inf , inf, inf, inf , 9 , 14 , inf, inf, inf} ,
13 {inf , inf, inf, inf , inf, 10 , inf, inf, inf} ,
14 {inf , inf, inf, inf , inf, inf , 2 , inf, inf} ,
15 {inf , inf, inf, 3 , inf, inf , inf, 1 , 6} ,
16 {inf , inf, inf, inf , inf, inf , inf, inf, 7} ,
17 {inf , inf, inf, inf , inf, inf , inf, inf, inf}};
18

19 const SparseGraph sparse_test_graph =
20 SparseGraph{
21 {{4,1}, {8,7},},
22 {{11,7},},
23 {{4,5}, {2,8},},
24 {{9,4}, {14,5},},
25 {{10,5},},
26 {{2,6},},
27 {{3,3}, {1,7}, {6,8},},
28 {{7,8},},
29 {}};
30

31 static SparseGraph _graph_to_sparse(const Graph &graph)
32 {
33 SparseGraph sp;
34 for (const auto &row : graph) {
35 std::vector<hop_t> outgoing;
36 for (size_t v = 0; v < row.size(); ++v) {
37 if (std::isfinite(row[v])) { outgoing.push_back({row[v], (int)v}); }
38 }
39 sp.push_back(outgoing);
40 }
41 return sp;
42 }
43

44 static std::string _graph_to_dot(const SparseGraph &sp)
45 {
46 std::ostringstream oss;
47 oss << "digraph G {" << std::endl;
48 for (int v = 0; v < (int)sp.size(); ++v) {
49 for (auto const &hop : sp[v]) {
50 oss << " " << v << " -> " << hop.vertex
51 << " [label= " << hop.weight << "];" << std::endl;
52 }

7.6. C++ IMPLEMENTATION 79

53 }
54 oss << "}" << std::endl;
55 return oss.str();
56 }
57

58 void print_graph(const SparseGraph &graph, bool as_url)
59 {
60 std::string str = _graph_to_dot(graph);
61 if (as_url) {
62 std::ostream os{std::cout.rdbuf()}; // to save the iomanip state
63 os << "https://dreampuf.github.io/GraphvizOnline/#";
64 std::string str = _graph_to_dot(graph);
65 for (const auto &c : str) {
66 os << '%' << std::hex << std::setfill('0') << std::setw(2)
67 << static_cast<int>(c);
68 }
69 os << std::endl;
70 } else {
71 std::cout << str << std::endl;
72 }
73 }
74

75 void print_graph(const Graph &graph, bool as_url)
76 {
77 print_graph(_graph_to_sparse(graph), as_url);
78 }

80 CHAPTER 7. GRAPHS

Chapter 8

Shortest paths

This chapter looks at the problem of establishing shortest paths in a weighted directed graph. Finding shortest
paths itself a key problem in discrete optimization and has countless applications. For example, a graph can
be used to represent geographic locations connected by roads, and finding shortest paths between locations is
the basis of automated navigation systems, for personal use as well as for optimizing the logistics of public
transportation, emergency vehicles, supply chain management, deliveries, etc. Some Internet protocols use
shortest paths to establish optimal routes between computers. Shortest path algorithms are also used to
program the movement of non-player characters in video games, to plan the motion of robots, in the statistical
analysis of social networks, in controlling elevators, in the design of complex integrated circuit, etc. Shortest
paths are also often used in computational geometry.

8.1 Definition of shortest path
Given a weighted directed graph (G, w), we are interested in finding shortest paths p between some of all
pairs of vertices u and v. A path p that connects u to v is shortest if it has minimum weight w(p) among
all the paths that also connect u to v. In other words, for any path q that connects u to v, p is shortest iif
w(p) ≤ w(q).

For example, there are only two paths p1 = (v1, v2, v3, v4) and p2 = (v1, v3, v4) connecting v1 and v4 in the
following graph:

3 2

6

2v1

v2

v3 v4

3 2

6

2v1

v2

v3 v4

The paths have weight w(p1) = 7 and w(p2) = 8. Hence, p1 is a shortest path, whereas p2 is not.

There can be several paths of minimal length connecting two given vertices. Generally, we are interested in
finding only one of them. For example, in the graph

3 2

5

v1

v2

v3

both (v1, v2, v3) and (v1, v3) are shortest paths connecting v1 to v3, because they both have weight 5. Thus,
we consider these two paths to be equally good.

81

82 CHAPTER 8. SHORTEST PATHS

Remark: Note that “shortest” does not refer to the number of edges in the path (which is its
length) but to its weight. Hence, it is more accurate to call such a path “lightest”, but this is
a less common terminology. The length and weight of a path coincide only if all edges have a
weight of one.

8.2 Existence of shortest paths
Before considering the problem of computing shortest paths, we should ask whether they exist or not. We
can formalize this problem as follows. Denote by Puv the set of all paths connecting u to v. A shortest path
from u to v is a lightest path among all of these:

p∗ ∈ argminp∈Puv
w(p).

We use the ∈ symbol to clarify that p∗ is potentially just one of several equivalently good shortest paths.
The question if whether the set of shortest paths is empty or not.

For instance, if there are no paths connecting u to v, then Puv = {} is empty and there are no shortest paths
either. However, even if Puv ̸= {} is not empty, meaning that there is at least one path connecting u to v, it
is still possible that there is no shortest one. The problem is that there can be a negative cycle.

We say that a directed weighed graph (G, w) contains a negative cycle if there is a cycle p with negative
weight w(q) < 0. If a path p connecting u to v contains a negative cycle q, then one can create new paths
that loop around the cycle q an arbitrary number of times, lowering the cost of the path arbitrarily. In this
case, while there are infinite paths connecting u to v, there is no shortest path, as one can always find an
even shorter one.

For example, in the following graph, one can reach v4 from v1 through paths with weights w(v1, v2, v3, v4) = 7,
w(v1, v2, v3, v2, v3, v4) = 6, w(v1, v2, v3, v2, v3, v2, v3, v4) = 5 and so on, using the negative cycle (v2, v3, v2)
any number of times:

3
2

-3

6

2
v1

v2
v3 v4

Formally, the problem is that the set Puv contains an infinite number of paths with arbitrarily small weight,
so there is no path which is shortest.

We can fix this problem by requiring the graph to have no negative cycles. In this case, if there is a path p
connecting u to v, then there is also a shortest path.

To show this fact, note that, if there is a path p that connects u to v and there are no negative cycles, then we
can find a simple path p′ that also connects u to v which is at least as good as p, i.e., w(p′) ≤ w(p). In fact,
if p is not simple, then there is an intermediate vertex r that repeats, meaning that the path is of the form
p = (u, . . . , r, . . . , r, . . . , v) (it is possible that u = r or v = r, and the argument still works). Because the
weight w(r, . . . , r) ≥ 0 of the cycle is non-negative, we can cut it out of p and obtain a new path p′ with the
same or smaller weight still connecting u to v. By repeating this construction as needed, we can eventually
remove all cycles from p until we are left with a simple path p′ as good as p.1

The importance of what we have just shown is that we can restrict the search of shortest paths to simple
paths only. Specifically, let P′

uv ⊂ Puv be the subset of paths connecting u to v that are also simple. Because
it is not possible for non-simple paths to be shorter than these (assuming that there are no negative cycles),
we have

p∗ ∈ argminp∈Puv
w(p) = argminp∈P′

uv
w(p).

1This process of elimination must terminate because p has finite length and each time we remove at least one vertex from it.

8.3. OPTIMAL SUBSTRUCTURE OF SHORTEST PATHS 83

The key is that the umber of simple path in a graph is finite (because there is a finite number of vertices,
these paths must have finite length). Hence, differently from Puv, the set P′

uv is finite. This is sufficient to
guarantee that there is indeed a path p∗ of minimum weight.

8.3 Optimal substructure of shortest paths
Efficient shortest paths algorithms are based on the fact that all subpaths of a shortest path must be shortest
paths as well.

To see this, let p = (u, . . . , r, . . . , v) be a path connecting vertex u to v through the intermediate vertex r:

u ... r ... v

Let p′ = (u, . . . , r) and p′′ = (r, . . . , v) be the two subpaths obtained by splitting p at r. If p is a shortest
path from u to v, then p′ and p′′ must be shortest paths connecting u to r and r to v, respectively. This is
because the cost w(p) of the full path p is the sum w(p′) + w(p′′) of the costs of the subpaths. Hence, if we
can improve either subpaths p′ or p′′, then we can also improve p, which means that p cannot be shortest.

This is an example of an optimal substructure property: the fact that the object p is optimal implies that its
component objects p′ and p′′ are optimal as well. This is useful in the computation of shortest paths because
it implies that shortest paths are composed of other, smaller, shortest paths.

Note that the optimal substructure property is a necessary but not a sufficient condition. It is not enough to
concatenate two shortest paths to obtain a new shortest path. It only means that the two component paths
must be shortest in order for their composition to possibly be shortest.

8.4 A compact representation of shortest paths
A first interesting application of the optimal substructure problem is to provide a compact representation of
a large number of shortest paths.

Specifically, suppose that we have identified all shortest path puv from any vertex u ∈ V in the graph to any
other vertex v ∈ V . Let r be the penultimate vertex in the path puv = (u, . . . , r, v), i.e.,

puv = pur ⊕ (r, v).

Due to the optimal substructure property, pur = (u, . . . , r) is a shortest path from u to r and (r, v) is a
shortest path from r to v (consisting of a single edge). Furthermore, note that in this decomposition it does
not matter which particular shortest path pur we consider. If there is more than one choice for pur, any of
them will result in an overall path puv = pur ⊕ (r, v) of the same quality. The only thing that matters is the
identity of the penultimate vertex r.

Based on this observation, we can encode a full set of shortest path puv by only remembering the predecessor
r = Puv ∈ V of the last vertex v in each of these paths.

In more detail, we introduce the predecessor matrix P ∈ (V ∪ {−1})V ×V . This notation means that the
matrix is indexed by a pair of vertices (u, v) ∈ V ×V and has values Puv ∈ V ∪{−1}, where −1 conventionally
denotes the case where there is no predecessor. The latter occurs if there is no path at all from u to v, or
u = v and the path is (u).

We also usually store a corresponding distance matrix Duv ∈ (R ∪ {∞})V ×V , such that Duv = w(puv) <∞
if there is a shortest path from u to v, and Duv =∞ otherwise.

The pair of matrices (P, D) thus encodes a full set of shortest paths using O(|V |2) storage only. Considering
that each shortest path can contain up to |V | vertices, this is much better than listing all shortest paths
explicitly, which would require O(|V |3) storage.

One of the exercises asks you to write an algorithm to extract all paths encoded by the predecessor matrix P .

84 CHAPTER 8. SHORTEST PATHS

8.5 Versions of the shortest paths problem
We will consider two versions of shortest paths problem. The first version seeks for all shortest paths
connecting any pair of vertices u and v in the graph:

All-paris shortest paths problem (APSP):

• Input: A weighted graph (G, w) = ((V, E), w) with no negative cycles.

• Output: The predecessor matrix P ∈ (V ∪ {−1})V ×V and the distance matrix D ∈
(R ∪ {∞})V ×V encoding all shortest paths puv, using the format described above.

The second version is similar but only seeks for paths connecting a specific source u to all other vertices v in
the graph:

Single-source shortest paths problem (SSSP):

• Input: A graph (G, w) = ((V, E), w) with no negative cycles and a source vertex u ∈ V .
The graph is represented by a weighted adjacency matrix or by a weighted adjacency list.

• Output: The predecessor vector P ∈ (V ∪{−1})V and the distance vector D ∈ (R∪{∞})V

encoding all shortest paths pv from the same source u.

Note that the vectors P and D in the SSSP problem are corresponding rows of the matrices P and D in the
APSP problem.

8.6 Bellman-Ford’s algorithm for the SSSP
The Bellman-Ford’s algorithm solves the SSSP problem. As the other algorithms described in this chapter,
Bellman-Ford maintains a set of putative shortest paths pv from the source u to all the other vertices v,
encoded by predecessor and distance vectors P and D. It then iteratively improvements these paths until
they are actual shortest paths.

Initially, there is only one non-degenerate path defined, namely pu = (u), which has length and weight of zero
(this is a shortest path from u to itself because there are no negative cycles). We “pretend” that some paths
pv for all the other vertices v ̸= u are also defined, but have infinite weight. This initial state is encoded by
setting Dv ←∞ and Pv ← −1 for all v ∈ V , except for the special case Du ← 0. Note that Pu = −1 because
u is not a predecessor of itself in the path (u).

The Bellman-Ford’s algorithm progressively improves these paths by applying the following relaxation
procedure repeatedly:

Relax(D, P, w, r, v) :

1. If Dr + w(r, v) < Dv:
1. Set Dv ← Dr + w(r, v).
2. Set Pv ← r.
3. Return true.

2. Return false.

The relax procedure tries to improve path pv by considering the alternative path p′
v = pr ⊕ (r, v) which uses

r as penultimate vertex. If this alternative path is shorter, i.e., w(p′
v) < w(pv), then P and D are update to

replace pv with p′
v. Additionally, the procedure returns true if the relaxation has a non-trivial effect and false

otherwise – this feature allows to slightly simplify the code for some algorithms.

The Bellman-Ford algorithm works by relaxing all edges (r, v) ∈ E in the graph |V | − 1 times:

BellmanFord(V, E, w, u) :

1. For all v = 1, . . . , |V |:
1. Let Dv ← 0 if v = u or ∞ otherwise.

8.6. BELLMAN-FORD’S ALGORITHM FOR THE SSSP 85

2. Let Pv ← −1.
2. Repeat |V | − 1 times:

1. For all (r, v) ∈ E:
1. Call Relax(D, P, w, r, v)

3. Return D and P .

By inspection, the complexity of the algorithm is Θ(|V | · |E|), i.e., proportional to the product of vertices and
edges. For sufficiently dense graphs, the number of edges is in the order of the number of vertices squared, so
that the complexity is Θ(|V |3).

8.6.1 Proof of correctness
We show that the BellmanFord algorithm correctly solves the SSSP. We do so by induction on the length
(number of edges) of the shortest paths. After initialization, all shortest paths of length at most 0 are
established; after one iteration, all shortest paths of length at most 1 are established; and so on.

This invariant is true after initialization because there is only one shortest path of length zero, i.e., the path
(u).

Suppose that the invariant is true for k iterations of the loop at line 2 and let us show that it is true for
iteration k + 1 as well. Let pv be one of the shortest paths of length k + 1. The key insight is to note that,
due to the optimal substructure property, this path can be written as pv = (u, . . . , r, v) = pr ⊕ (r, v) where r
is the penultimate vertex in the path and pr is also a shortest path, obviously of length k. By the inductive
hypothesis, this means that pr (or an equally good path) has already been found by the algorithm in a prior
iteration. After edge (r, v) is relaxed during iteration k + 1, pv is thus set to this path (or to another equally
good path).

In this manner, we can conclude that, after k iterations, the algorithm has established all shortest paths
of length at most k. In order to determine how many iterations are necessary to find all shortest path, we
should thus ask what is their maximum length. We have shown above (see here) that, when there are no
negative cycle, the shortest paths can be assumed to be simple. Hence, the maximum length of a shortest
path is |V | − 1. We conclude that the algorithm has necessarily found all shortest path afters at most |V | − 1
iterations.

8.6.2 Detection of negative cycles (optional)
In our definition of the SSSP problem, the graph is required to be free of negative cycles, so that shortest
paths are well defined. However, the Bellman-Ford algorithm can also be used to detect if a graph has
negative cycles in the first place. The detection is performed by checking if it is still possible to lower the
cost of any path after |V | − 1 iterations of the algorithm. If the graph has no negative cycles, we know that
all shortest paths are established in |V | − 1 iterations, so no further improvements are possible. However, if
there is a negative cycle, one can prove that the algorithm keeps finding shorter paths indefinitely, which can
be thus used for detecting such cycles.

8.6.3 C++ implementation of Bellman-Ford’s algorithm
The following C++ module implements the bellman_ford algorithm:

1 #ifndef __shortest_paths_bf__
2 #define __shortest_paths_bf__
3

4 #include "graph.hpp"
5

6 std::vector<hop_t> bellman_ford(const Graph &graph, const int source,
7 bool &has_negative_cycle);
8

9 #endif // __shortest_paths_bf__

86 CHAPTER 8. SHORTEST PATHS

For convenience, vectors D and P are combined in a single vector<hop_t> where hop_t is a structure,
introduced above, that contains a weight (for the D part) and a vertex index (for the P part).

The implementation closely follows the pseudo-code above:
1 #include "shortest_paths_bf.hpp"
2 #include "shortest_paths_relax.hpp"
3

4 #include <cassert>
5

6 std::vector<hop_t> bellman_ford(const Graph &graph, const int source,
7 bool &has_negative_cycle)
8 {
9 const int V = static_cast<int>(graph.size());

10 assert(0 <= source && source < V);
11

12 auto DP = std::vector<hop_t>(V, {inf, -1});
13 DP[source].weight = 0;
14

15 for (int iter = 0; iter < V - 1; ++iter) {
16 has_negative_cycle = false;
17 for (int r = 0; r < V; ++r) {
18 for (int v = 0; v < V; ++v) {
19 has_negative_cycle |= relax(graph, DP, r, v);
20 }
21 }
22 }
23

24 return DP;
25 }

Differently from the pseudo-code, this particular implementation visits all possible pairs (r, v) whether they
are actual edges or not; this works because, by definition of weighted adjacency matrix, Wrv =∞ if there is
no edge (i.e., a missing edge is interpreted as an edge with infinite weight).

The following test driver tests the algorithm on the test_graph:
1 #include "shortest_paths_bf.hpp"
2 #include <iostream>
3 #include <utils.hpp>
4

5 int main(int argc, const char *argv[])
6 {
7 Graph graph = test_graph;
8 print_graph(graph);
9

10 int source = 2;
11 std::cout << "Bellman-Ford SSSP from source " << source << std::endl;
12

13 bool has_negative_cycle;
14 auto DP = bellman_ford(graph, source, has_negative_cycle);
15 if (has_negative_cycle) {
16 std::cout << "The graph has a negative cycle." << std::endl;
17 } else {
18 print(DP);
19 }

8.7. FLOYD-WARSHALL’S ALGORITHM FOR THE APSP 87

20 std::cout << std::endl;
21 return 0;
22 }

digraph G {
0 -> 1 [label= 4];
0 -> 7 [label= 8];
1 -> 7 [label= 11];
2 -> 5 [label= 4];
2 -> 8 [label= 2];
3 -> 4 [label= 9];
3 -> 5 [label= 14];
4 -> 5 [label= 10];
5 -> 6 [label= 2];
6 -> 3 [label= 3];
6 -> 7 [label= 1];
6 -> 8 [label= 6];
7 -> 8 [label= 7];

}

Bellman-Ford SSSP from source 2
[(inf,-1), (inf,-1), (0,-1), (9,6), (18,3), (4,2), (6,5), (7,6), (2,2)]

8.7 Floyd-Warshall’s algorithm for the APSP
The Floyd-Warshall algorithm solves the APSP problem, computing the shortest paths between all pairs of
vertices u and v in the graph.

Similarly to the Bellman-Ford’s algorithm, the Floyd-Warshall’s algorithm works by progressively shortening
a set of paths puv between all pair of vertices, encoded by provisional matrices D and P .

Initially, the only non-degenerate paths are the ones of length zero, i.e., of the type (u) where u ∈ V , and of
length one, i.e., of the type (u, v) where (u, v) ∈ E is an edge. All other paths are initialized to have infinite
weight. This situation is encoded by setting Duv ←∞ and Puv ← −1 except for the cases Duu ← 0 (paths
of length zero) and Duv ← w(u, v) and Puv ← u when (u, v) ∈ E is and edge (paths of length one).

The algorithm progressively relaxes these paths using the procedure:

Relax(D, P, w, r, u, v) :

1. If Dur + Drv < Duv:
1. Set Duv ← Dur + Drv.
2. Set Puv ← Prv.

This procedure replaces the current path puv from u to v with the path pur ⊕ prv using r as intermediate
vertex provided that this new path is in fact shorter than the current one.

The Floyd-Warshall’s algorithm relaxes all paths puv by considering each vertex r ∈ V as a possible
intermediate:

FloydWarshall(V, E, w) :

1. For all u, v ∈ V :
1. Let Duv ← w(u, v) if (u, v) ∈ E, otherwise ∞.
2. Let Puv ← u if (u, v) ∈ E, otherwise −1.

2. For all r in V :
1. For all u in V :

1. For all v in V :

88 CHAPTER 8. SHORTEST PATHS

1. Call Relax(D, P, w, r, u, v)
3. Return D and P .

The complexity of this algorithm is, clearly, O(|V |3).

An exercise asks you to prove the correctness of this algorithm, namely to show that it does terminates with
all shortest paths correctly computed.

The key insight is that, after r iterations, the algorithm has found all shortest path pr
uv with the additional

constraint that only vertices {1, 2, . . . , r} can be used as intermediate vertices in those paths.

When (u, v) is relaxed at iteration r + 1, the shortest path pr+1
uv is established. In fact, this can be assumed to

be of one of two types: either it uses vertex r+1 or it does not. In the latter case, it must be pr+1
uv = pr

uv. In the
former case, we can assume pr+1

uv = pr
u,r+1 ⊕ pr

r+1,v where pr
u,r+1 and pr

r+1,v are shortest paths that terminate
and begin at r + 1 and that only use vertices {1, . . . , r} as intermediate. By the inductive hypothesis, these
have already been established in a previous iteration of the algorithm, so calling Relax(D, P, w, r + 1, u, v)
establishes pr+1

uv (or an equally good path).

8.7.1 C++ implementation of Floyd-Warshall’s algorithm
We provide an example C++ implementation of the Floyd-Warshall algorithm. The algorithm is implemented
as a single function:

1 #ifndef __shortest_paths_fw__
2 #define __shortest_paths_fw__
3

4 #include "graph.hpp"
5

6 std::vector<std::vector<hop_t>> floyd_warshall(const Graph &graph);
7

8 #endif // __shortest_paths_fw__

The implementation follows the pseudo-code directly:
1 #include "shortest_paths_fw.hpp"
2 #include <cmath>
3

4 std::vector<std::vector<hop_t>> floyd_warshall(const Graph &graph)
5 {
6 const auto V = static_cast<int>(graph.size());
7

8 auto DP =
9 std::vector<std::vector<hop_t>>(V, std::vector<hop_t>(V, {inf, -1}));

10

11 for (int u = 0; u < V; ++u) {
12 for (int v = 0; v < V; ++v) {
13 if (u == v) {
14 DP[u][v].weight = 0;
15 DP[u][v].vertex = -1;
16 } else if (std::isfinite(graph[u][v])) {
17 DP[u][v].weight = graph[u][v];
18 DP[u][v].vertex = u;
19 }
20 }
21 }
22

23 for (int r = 0; r < V; ++r) {

8.7. FLOYD-WARSHALL’S ALGORITHM FOR THE APSP 89

24 for (int u = 0; u < V; ++u) {
25 for (int v = 0; v < V; ++v) {
26 auto duv = DP[u][v].weight;
27 auto dur = DP[u][r].weight;
28 auto drv = DP[r][v].weight;
29 if (dur + drv < duv) {
30 DP[u][v].weight = dur + drv;
31 DP[u][v].vertex = DP[r][v].vertex;
32 }
33 }
34 }
35 }
36

37 return DP;
38 }

The following test driver tests the algorithm:
1 #include "shortest_paths_fw.hpp"
2 #include <iostream>
3 #include <utils.hpp>
4

5 int main(int argc, const char *argv[])
6 {
7 Graph graph = test_graph;
8 print_graph(graph);
9

10 std::cout << "Floyd-Warshall all pairs" << std::endl;
11 auto paths = floyd_warshall(graph);
12 for (const auto &row : paths) { print(row); }
13 std::cout << std::endl;
14

15 return 0;
16 }

digraph G {
0 -> 1 [label= 4];
0 -> 7 [label= 8];
1 -> 7 [label= 11];
2 -> 5 [label= 4];
2 -> 8 [label= 2];
3 -> 4 [label= 9];
3 -> 5 [label= 14];
4 -> 5 [label= 10];
5 -> 6 [label= 2];
6 -> 3 [label= 3];
6 -> 7 [label= 1];
6 -> 8 [label= 6];
7 -> 8 [label= 7];

}

Floyd-Warshall all pairs
[(0,-1), (4,0), (inf,-1), (inf,-1), (inf,-1), (inf,-1), (inf,-1), (8,0), (15,7)]
[(inf,-1), (0,-1), (inf,-1), (inf,-1), (inf,-1), (inf,-1), (inf,-1), (11,1), (18,7)]
[(inf,-1), (inf,-1), (0,-1), (9,6), (18,3), (4,2), (6,5), (7,6), (2,2)]

90 CHAPTER 8. SHORTEST PATHS

[(inf,-1), (inf,-1), (inf,-1), (0,-1), (9,3), (14,3), (16,5), (17,6), (22,6)]
[(inf,-1), (inf,-1), (inf,-1), (15,6), (0,-1), (10,4), (12,5), (13,6), (18,6)]
[(inf,-1), (inf,-1), (inf,-1), (5,6), (14,3), (0,-1), (2,5), (3,6), (8,6)]
[(inf,-1), (inf,-1), (inf,-1), (3,6), (12,3), (17,3), (0,-1), (1,6), (6,6)]
[(inf,-1), (inf,-1), (inf,-1), (inf,-1), (inf,-1), (inf,-1), (inf,-1), (0,-1), (7,7)]
[(inf,-1), (inf,-1), (inf,-1), (inf,-1), (inf,-1), (inf,-1), (inf,-1), (inf,-1), (0,-1)]

8.8 Dijkstra’s algorithm for the SSSP
Dijkstra’s algorithm solves the SSSP problem. The algorithm is faster than Bellman-Ford’s one for sparse
graphs, which makes it a better choice for several applications. However, it requires all weights to be
non-negative, which is more restrictive than assuming the absence of negative cycles as in the Bellman-Ford’s
algorithm.

Dijkstra’s algorithm works by finding shortest paths from the source vertex u to an expanding set of other
vertices. Specifically, the algorithm maintains a collection of paths pv from the source u to all vertices v,
represented as before by the predecessor vector P and the distance vector D. The graph vertices are divided
into open ones Q ⊂ V and closed ones V −Q. The paths pv are shortest for all closed vertices v ∈ V −Q. At
every iteration, the algorithm closes one more vertex, thus finding one more shortest path, until all are found.

In order to do so, the algorithm maintains the following two-parts invariant:

• (P1) For all closed vertices v ∈ V −Q, the paths pv are shortest.

• (P2) For all open vertices v ∈ Q, the weights of the paths pv are given by:

Dv = min
r∈V −Q

Dr + w(r, v). (8.1)

In this expression, we take w(r, v) =∞ if there is no edge (r, v) ∈ E.

Initially, all vertices are open, so the algorithm starts by initialising Q← V and Dv ←∞ and Pv ← −1 for
all v ∈ V except for Du ← 0 (this is the same initialisation as in the Bellman-Ford algorithm).

At every iteration, Dijkstra’s algorithm finds the open node v∗ with minimal weight Dv, i.e.,

v∗ = argminv∈Q Dv. (8.2)

It then “declares” pv∗ to be a shortest path by removing v∗ from the set Q of open nodes, and then uses
relaxation to update D and P in order to preserve the invariant. In pseudo-code, the algorithm is:

Dijkstra(V, E, w, u) :

1. For all v ∈ V :
1. Let Dv ← 0 if v = u or ∞ otherwise.
2. Let Pv ← −1.

2. Let Q← V .
3. While Q is not empty:

1. Let v∗ ← argminv∈Q Dv

2. Remove v∗ from Q.
3. For all v ∈ Q such that (v∗, v) ∈ E:

1. Call Relax(D, P, w, v∗, v).
4. Return D and P .

As for the complexity of this algorithm, line 3.3.1 is executed once for each edge in the graph. Line 3.1 is
executed once for each vertex and it has cost O(|V |). Hence, the overall cost of Dijkstra is O(|V |2 + |E|) =
O(|V |2).

8.9. USING A PRIORITY QUEUE 91

8.8.1 Proof of correctness
At every iteration of line 3.1, Dijkstra’s algorithm closes vertex v∗ because path pv∗ is a shortest path. To
show this fact, note that, by line 3.1 and invariants P1 and P2, this path is of the form pv∗ = pr∗ ⊕ (r∗, v∗)
where

(r∗, v∗) = argminr∈V −Q,v∈Q w(pr∗) + w(r∗, v∗) (8.3)

Any other path q from u to v can be written as

q = (u, . . . , r)⊕ (r, v)⊕ (v, . . . , v∗) (8.4)

where r is closed and v is open. None of these paths can be better than pv∗ because:

w(q) = w(u, . . . , r) + w(r, v) + w(v, . . . , v∗) ≥ w(pr) + w(r, v) ≥ w(pr∗) + w(r∗, v∗) = w(pv∗).

Here, the first inequality uses the fact that w(v, . . . , v∗) ≥ 0 because there are no negative weights, and the
fact that w(u, . . . , r) ≥ pr because r is closed and thus pr is already a shortest path from u to r. The second
inequality is trivially satisfied by the definition of (r∗, v∗) from (8.3).

Having thus concluded that pv∗ is indeed a shortest path, the next step is to show that lines 3.2 and 3.3
restore invariants P1 and P2 for the next iteration. Line 3.2 removes v∗ form Q, thus marking it as closed.
Because pv∗ is shortest, this preserves property P1, but not necessarily property P2. The latter is restored by
line 3.3 by updating vectors D and P . The invariant P2 from equation (8.1) states that, for all open nodes
Dv, it must be:

Dv = min
r∈(V −Q−{v∗})∪{v∗}

Dr + w(r, v).

We have rewritten the expression to single out vertex v∗ as this was just closed. Because of the invariant P2,
before the loop at lines 3.3, Dv is already the minimum over r ∈ V −Q− {v∗} for every open vertex v ∈ Q.
Invoking the Relax algorithm at line 3.3.1 further extends this minimization to account for the newly closed
vertex v∗, thus restoring property P2.

8.9 Using a priority queue
The slowest part of the Dijkstra algorithm is searching for the next node to close at line 3.1. This step has
cost O(|V |) and is executed |V | times, which makes the bulk of the algorithm’s O(|V |2) complexity. We show
now that a priority queue can be used to lower this cost substantially.

Specifically, we replace Q with a min-priority queue, storing in it the pairs:

(Dr + w(r, v), v), r ∈ V −Q, v ∈ Q.

In this way, line 3.1 in Dijkstra can be replaced by extracting the highest-priority element from the queue.
This is in fact equivalent to the combined minimisations (8.1) and (8.2). If we use a min-heap for implementing
the queue, this has cost O(log |Q|) instead of O(|Q|) of a linear search, which is much better.

The resulting algorithm is:

DijkstraPriority(V, E, w, u) :

1. For all v ∈ V :
1. Let Dv ← 0 if v = u or ∞ otherwise.
2. Let Pv ← −1.

2. Let Q← {(0, u)} be a min-priority queue.
3. While Q is not empty:

1. Let (d∗, v∗)← PriorityDequeue(Q).
2. For all v ∈ Q such that (v∗, v) ∈ E:

1. If calling Relax(D, P, w, v∗, v) returns true:
1. Call PriorityEnqueue(Q, (Dv∗ + w(v∗, v), v)).

92 CHAPTER 8. SHORTEST PATHS

4. Return D and P .

After vertex v∗ is closed, we call Relax as before for all open nodes v ∈ Q. Whenever a relaxation has a
non-trivial effect, meaning that it shortens a path, we add the pair (Dv∗ + w(r, v∗), v) to the queue.

We should also remove all pairs from the queue for the newly closed vertex v∗ as this should not be considered
any longer; this is possible, but tricky to implement with simple priority queues. Instead, we leave such pairs
in the queue. When they are extracted later, the relaxation at line 3.2.1 has no effect for them (as these
correspond to paths that are already as short as possible); furthermore, in this case, Relax returns false,
which skips line 3.2.1.1, so nothing happens (except wasting a bit of time) and it is as if we had removed
these vertices from the queue.

As for the complexity, PriorityEnqueue at line 3.1 is called at most once for each edge, so the queue Q
never contains more than |E| elements. Thus the cost of DijkstraPriority is O((|V | + |E|) log |E|) =
O((|E|+ |V |) log |V |). For a dense graph, the complexity is thus O(|V |2 log |V |), which is slightly worse than
O(|V |2) of Dijkstra. However, for a sparse graph, the cost is just O(|V | log |V |), which is much better than
O(|V |2).

8.9.1 C++ implementation of Dijkstra’s shortest paths algorithm
Next, we discuss a C++ implementation of DijkstraPriority.

The declaration is as simple as for the other algorithms so far:
1 #ifndef __shortest_paths_dijkstra__
2 #define __shortest_paths_dijkstra__
3

4 #include "graph.hpp"
5

6 std::vector<hop_t> dijkstra(const Graph &graph, const int source);
7 std::vector<hop_t> dijkstra_priority(const Graph &graph, const int source);
8

9 #endif // __shortest_paths_dijkstra__

The C++ implementation is close to the pseudo-code above. Here is the one for Dijkstra:
1 #include "shortest_paths_dijkstra.hpp"
2 #include "shortest_paths_relax.hpp"
3 #include <priority_queue.hpp>
4

5 #include <cmath>
6

7 std::vector<hop_t> dijkstra(const Graph &graph, const int source)
8 {
9 const int V = static_cast<int>(graph.size());

10 assert(0 <= source && source < V);
11

12 auto DP = std::vector<hop_t>(V, {inf, -1});
13 DP[source].weight = 0;
14

15 std::vector<bool> is_open(V, true);
16

17 while (true) {
18 float D_star = inf;
19 int v_star = -1;
20 for (int v = 0; v < V; ++v) {
21 if (is_open[v] && DP[v].weight < D_star) {

8.9. USING A PRIORITY QUEUE 93

22 D_star = DP[v].weight;
23 v_star = v;
24 }
25 }
26

27 if (v_star < 0) {
28 break; // all closed, stop
29 }
30

31 is_open[v_star] = false;
32

33 for (int v = 0; v < V; ++v) {
34 if (is_open[v] && std::isfinite(graph[v_star][v])) {
35 relax(graph, DP, v_star, v);
36 }
37 }
38 }
39

40 return DP;
41 }

And here is the one for DijkstraPriority:
1 #include "shortest_paths_dijkstra.hpp"
2 #include "shortest_paths_relax.hpp"
3 #include <priority_queue.hpp>
4

5 #include <cmath>
6

7 std::vector<hop_t> dijkstra_priority(const Graph &graph, const int source)
8 {
9 const int V = static_cast<int>(graph.size());

10 assert(0 <= source && source < V);
11

12 auto DP = std::vector<hop_t>(V, {inf, -1});
13 DP[source].weight = 0;
14

15 auto queue = std::vector<hop_t>{};
16 auto comparison = std::less<hop_t>{}; // for a min-priority queue
17 priority_enqueue(queue, {0, source}, comparison);
18

19 while (!queue.empty()) {
20 auto v_star = queue[0].vertex;
21 priority_dequeue(queue, comparison);
22

23 for (int v = 0; v < V; ++v) {
24 if (std::isfinite(graph[v_star][v])) {
25 if (relax(graph, DP, v_star, v)) {
26 priority_enqueue(queue, {DP[v].weight, v}, comparison);
27 }
28 }
29 }
30 }
31

94 CHAPTER 8. SHORTEST PATHS

32 return DP;
33 }

The following test driver tests the algorithm on the usual test_graph:
1 #include "shortest_paths_dijkstra.hpp"
2 #include <utils.hpp>
3

4 int main(int argc, const char *argv[])
5 {
6 auto graph = test_graph;
7 print_graph(graph);
8

9 {
10 int source = 2;
11 std::cout << "Dijkstra from source " << source << std::endl;
12 auto parents = dijkstra(graph, source);
13 print(parents);
14 std::cout << std::endl;
15 }
16

17 {
18 int source = 2;
19 std::cout << "Dijkstra priority from source " << source << std::endl;
20 auto parents = dijkstra_priority(graph, source);
21 print(parents);
22 std::cout << std::endl;
23 }
24

25 return 0;
26 }

digraph G {
0 -> 1 [label= 4];
0 -> 7 [label= 8];
1 -> 7 [label= 11];
2 -> 5 [label= 4];
2 -> 8 [label= 2];
3 -> 4 [label= 9];
3 -> 5 [label= 14];
4 -> 5 [label= 10];
5 -> 6 [label= 2];
6 -> 3 [label= 3];
6 -> 7 [label= 1];
6 -> 8 [label= 6];
7 -> 8 [label= 7];

}

Dijkstra from source 2
[(inf,-1), (inf,-1), (0,-1), (9,6), (18,3), (4,2), (6,5), (7,6), (2,2)]

Dijkstra priority from source 2
[(inf,-1), (inf,-1), (0,-1), (9,6), (18,3), (4,2), (6,5), (7,6), (2,2)]

Appendix A

Appendix (optional)

A.1 Move semantics
C++11 introduced the concept of “move semantics” to optimize away certain redundant copy operations.
It also allows smart pointers such as unique_ptr to work by making the concept of object ownership more
explicitly.

Moving an object onto another is similar to copying it, except that the resources of the source object can be
“stolen” and transferred to the destination object. Consider for example the following code:

1 #include <vector>
2 #include <iostream>
3

4 int main(int argc, char** argv) {
5 std::vector<float> a {1,2,3,4};
6 std::vector<float> b {a}; // copy `a`
7 std::vector<float> c {std::move(a)}; // move `a`
8 std::cout << "a.size() = " << a.size()
9 << ", b.size() = " << b.size()

10 << ", c.size() = " << c.size() << '\n';
11 }

a.size() = 0, b.size() = 4, c.size() = 4

The code creates a vector a of four elements, then a vector b which is a copy of a, and finally a vector c by
moving (rather than copying) the content of a onto c. As a result, the final size of a is zero and the size of b
and c is four. Note that object a still exists and is a valid object: moving does not destroy an object, but a is
now an empty vector because its content has been moved to c, which can be done quickly by changing a data
pointer buried in the implementation of the std::vector class.

Under the hood, the move behaviour is obtained by calling a move constructor instead of a copy constructor
when the “target” object is constructed. For an object of type T, a copy constructor has signature T(const
T&) and a move constructor has signature T(T&&). Here the important difference is that T& is a lvalue
reference and T&& an rvalue reference. This is usually explained as follows:

An lvalue refers to an expression that can appear to both sides of the = assignment symbol,
whereas an rvalue can only appear to the right of it.

A more useful way of thinking about it is that rvalues are temporary objects, created for instance as
intermediate values when evaluating an expression like (a+b)*c. Here the result of the sum a+b is a
temporary object that is destroyed immediately after the expression finishes computing. Lvalues are instead
objects that last beyond the expression they appear in (for example variables a, b, and c in the expression).

95

96 APPENDIX A. APPENDIX (OPTIONAL)

The difference is important because the C++ compiler is allowed to discard rvalue objects as soon as their use
in an expression finishes. This gives it an opportunity for optimisation: rather than copying the temporary
rvalue to assign it to a target lvalue, it can move it.

The std::move function casts an lvalue T& to an rvalue T&&, therefore signalling to the C++ compiler that
the object can be moved from; in practice, this allows the logic of the program to dispose of the current state
of the object. Ultimately, what happens depends on the definition of the move constructor T(T&&); in fact,
this constructor may not even be declared, in which case the compiler falls back to using the copy constructor
T(const T&) (because T&& is implicitly convertible to const T&). So an expression such as std:move(a) is
best interpreted as “move if you can”.

Note that std::move does not really “move” anything; it simply casts the object in a way that allows using a
move operation on it. For example, T y(x) initializes an object y by invoking the copy constructor T(const
T&), whereas T y(std::move(x)) invokes the move constructor T(T&&). Temporary objects in expressions
are automatically rvalues, so T z(x+y) invokes the move constructor T&& on the temporary object x+y
obtained by summing x and y.

Note that the object moved from is not destroyed or disposed of. Only its state is changed, generally to
signify an “empty” state. For example, vector a above is still a valid vector after moving, just an empty
one. This means that the state must still be valid after moving. In particular, when the destructor ~T() is
eventually called to dispose of the object, this must not crash the program.

A.1.1 Ownership and unique_ptr
A unique_ptr is a pointer with unique ownership of an object: when the unique_ptr is deleted, so is the
object. You cannot copy a unique_ptr because this would duplicate ownership. However, you can move it:

1 #include <utility>
2 #include <memory>
3 #include <iostream>
4

5 int main(int argc, char** argv) {
6 // `a` owns a float object allocated on the heap
7 auto a = std::make_unique<float>(1);
8 std::cout << "a = " << a.get() << '\n';
9 // transfers ownership of the float object to `b`

10 std::unique_ptr<float> b {std::move(a)};
11 std::cout << "a = " << a.get() << ", b = " << b.get() << '\n';
12 }

a = 0x7fe52d405830
a = 0x0, b = 0x7fe52d405830

If you want to support move operations in a class, you must either rely on a move constructor implicitly
generated by the compiler, or write one yourself. For example:

1 #include <utility>
2 #include <memory>
3 #include <iostream>
4

5 struct T {
6 // Explicitly defined default constructor
7 T() : storage{new float(0)} {}
8 // Explicitly defined move constructor
9 T(T&& t) : storage{t.storage} { t.storage = nullptr; }

10 // Explicitly defined destructor
11 ~T() { if (storage) { delete storage; } }

A.1. MOVE SEMANTICS 97

12 float* storage;
13 };
14

15 struct Q {
16 // The compiler implicitly defines:
17 // - The copy constructor Q(const Q&)
18 // - The move constructor Q(Q&&)
19 // - The destructor
20 // etc.
21 Q() : storage{new float(0)} {}
22 std::unique_ptr<float> storage;
23 };
24

25 int main(int argc, char** argv) {
26 T a1; // `a` owns a pointer to float
27 T b1{std::move(a1)}; // now `b` owns the pointer
28 std::cout << "a1.storage = " << a1.storage
29 << ", b1.storage = " << b1.storage << '\n';
30

31 Q a2;
32 Q b2{std::move(a2)};
33 std::cout << "a2.storage = " << a2.storage.get()
34 << ", b2.storage = " << b2.storage.get() << '\n';
35 }

a1.storage = 0x0, b1.storage = 0x7fce1b405830
a2.storage = 0x0, b2.storage = 0x7fce1b405840

Note tha the move constructor T(T&& t) modifies the object we are moving from by setting the
t.storage to nullptr. Why?

There are several rules for when C++ implicitly defines constructors for a class. See for example the rule of
three.

Utilities such as std::swap require input arguments to be move constructible. This means that, when
possible, move constructors are used to swap objects more efficiently (instead of creating copies). However,
this does not mean that an object must have a move constructor for std::swap to be usable (see below).

A.1.2 Move constructible and assignable
An object T x is move constructible if it can be constructed from an rvalue, i.e. if T y(std::move(x))
compiles without error.

This obviously works if type T defines a move constructor T(T&&). However, it also works if it only defines a
copy constructor T(const T&) (and does not declare a move constructor) because the latter also accepts
an rvalue T&& as input. However, an object is not move constructible if the move constructor is declared as
deleted.

An object is move assignable if T x, y; y=std:move(x); works, with similar considerations.

Sometimes determining whether an object is move constructible or assignable requires understanding how
implicit constructor definitions work. For instance:

1 #include <utility>
2

3 struct T1 {
4 int x;

https://en.cppreference.com/w/cpp/language/rule_of_three
https://en.cppreference.com/w/cpp/language/rule_of_three
https://en.cppreference.com/w/cpp/algorithm/swap

98 APPENDIX A. APPENDIX (OPTIONAL)

5 // The compiler defines implicitly:
6 // - the default constructor T1()
7 // - the copy constructor T1(const T1&)
8 // - the move constructor T1(T1&&)
9 // etc.

10 };
11

12 struct T2 {
13 int x;
14 T2() : x{0} {}
15 T2(const T2& t) : x{t.x} {}
16 // Because there is a user-defined copy constructor
17 // the compiler does not implicitly generate other constructors.
18 // In particular, the move constructor T2(T2&&) is
19 // not only not defined, but also *not declared*.
20 };
21

22 struct T3 {
23 int x;
24 T3() : x{0} {}
25 T3(const T3& t) : x{t.x} {}
26 T3(T3&&) = delete; // Declares the move constructor as deleted
27 };
28

29 int main(int argc, char** argv) {
30 T1 a1; // OK: implicit default constructor
31 auto b1 = T1(std::move(a1)); // OK: implicit move constructor
32 std::swap(a1, b1); // OK: T1 is move constructible
33

34 T2 a2; // OK: default constructor
35 auto b2 = T2(std::move(a2)); // OK: copy constructor
36 std::swap(a2, b2); // OK: T2 is move constructible
37

38 T3 a3; // OK: default constructors
39 // auto b3 = T3(std::move(a3)); // Error: move constructor deleted
40 // std::swap(a3, b3); // Error: T3 is not move constructible, required by swap
41

42 return 0;
43 }

A.2 Universal references
Universal references are relevant when move semantics meets templates.

Consider the problem of defining a template function that assigns an object source to a target object target.
We may define the function like this:

1 template <typename T, typename E> void assign(T& target, E&& source) {
2 target = std::forward<E>(source);
3 }

Both T and E are generic types in the template. However, T& is declared to be a reference type, whereas E is
a universal reference. In a template context where E is a generic type, E&& does not mean rvalue reference,
but rather is a placeholder for either lvalue or rvalue reference, depending on “what is available” when the

A.2. UNIVERSAL REFERENCES 99

template is instantiated.

The std::fowrard<E>(source) syntax inside the template can be though as “move if possible”. Namely,
std::forward<E>(source) is the same as std::move(source) if we can move from source, or it is the
same as source otherwise. Depending on the outcome of this step, then either the move operator=(E&&) or
copy operator=(const E&) assignment operator of T is used to carry out the assignment.

In short, assign(target, source) will result in a copy-assignment operator and assign(target,
std::move(source)) will result in a move-assignment operator (provided that T supports it).

This is demonstrated by the following driver:
1 #include <utility>
2 #include <memory>
3 #include <iostream>
4 #include <probes.hpp>
5

6 // E&& is a universal reference
7 template <typename T, typename E> void assign(T& target, E&& source) {
8 target = std::forward<E>(source);
9 }

10

11 int main(int argc, char** argv) {
12 {
13 Movable a{100} ;
14 Movable b ;
15 // `a` supports move semantics and is cast to an rvalue by std::move
16 assign(b, std::move(a));
17 std::cout << "a = " << a
18 << ", b = " << b << '\n';
19 }
20

21 std::cout << '\n';
22

23 {
24 Movable b ;
25 // `a` supports move semantics and is an rvalue (temporary)
26 assign(b, Movable{100});
27 std::cout << "b = " << b << '\n';
28 }
29

30 std::cout << '\n';
31

32 {
33 Movable a{100} ;
34 Movable b ;
35 // `a` supports move semantics, but std::move is not used, so
36 // this is not engaged (`a` is a lvalue).
37 assign(b, a);
38 std::cout << "a = " << a
39 << ", b = " << b << '\n';
40 }
41

42 std::cout << '\n';
43

44 {

100 APPENDIX A. APPENDIX (OPTIONAL)

45 Copyable a{100} ;
46 Copyable b ;
47 // `a` does not support move semantics: move can still be used
48 // to cast `a` to an rvalue but the rvalue is converted back to
49 // an lvalue within `assign` as there is no `operator=(Copyable&&)`
50 // defined (instead `operator=(const Copyable&)` is used)
51 assign(b, std::move(a));
52 std::cout << "a = " << a
53 << ", b = " << b << '\n';
54 }
55

56 return 0;
57 }

Movable: Constructed from "100"
Movable: Default-constructed
Movable: Move-assigned
a = 0, b = 100
Movable: Destructed
Movable: Destructed

Movable: Default-constructed
Movable: Constructed from "100"
Movable: Move-assigned
Movable: Destructed
b = 100
Movable: Destructed

Movable: Constructed from "100"
Movable: Default-constructed
Movable: Copy-assigned
a = 100, b = 100
Movable: Destructed
Movable: Destructed

Copyable: Constructed from "100"
Copyable: Default-constructed
Copyable: Copy-assigned
a = 100, b = 100
Copyable: Destructed
Copyable: Destructed

Next, we discuss in more detail the universal reference E&& in the function arguments; this is not a rvalue
reference as the use of && might imply. When we call assign(target, expr):

• if expr is an rvalue reference of type U&&, then E=U and the argument source of the function assign is
of type U&& (an rvalue reference);

• if expr is an lvalue reference of type U&, then E=U& and the argument source of the function assign is
of type U& && = U& (an lvalue reference).

The latter condition U& && = U&is due to so called “reference collapsing rules”: & && -> &, && & -> & and
&& && -> &&.

Universal references are often used with std::forward<E>(x). All this does is to recast x to E&&. Hence:

• if E=U, then std:forward<E>(x) casts x to type E&&; hence, this is similar to using std:move(x);

A.2. UNIVERSAL REFERENCES 101

• if E=U&, then std:forward<E>(x) casts x to type E& && = E& (due to reference collapsing); hence, this
is similar to using x directly (without moving).

You might wonder why, in the first case, we need to cast x to type U&& since x is of type U&& to start with.
The reason is that x is a named entity (i.e. an object with a name in the code) and named entities always
evaluate as lvalues even if it they are declared as rvalues.

We can now explain in more detail what happens in this code:
1 Movable a{100};
2 Movable b;
3 assign(b, a);

a evaluates as an lvalue reference to an object of type Movable (because a is a named entity). In this case,
E=Movable& and the statement target = std::forward<E>(source) in the assign function is the same
a target = source, which invokes the copy assignment operator of Movable. This is the expected
behaviour because we did not authorize the program to move x. On the other hand:

1 Movable a{100};
2 Movable b;
3 assign(b, std::move(a));

converts x into a rvalue reference (via std::move). In this case, E=Movable (rvalue reference) and the statement
target = std::forward<E>(source) in the assign function the same a target = std::move(source),
which invokes the move assignment operator of Movable.

See also:

• Scott Meyer on universal references

https://isocpp.org/blog/2012/11/universal-references-in-c11-scott-meyers

102 APPENDIX A. APPENDIX (OPTIONAL)

Appendix B

Locality-sensitive hashing (optional)

The hash tables introduced in the previous chapter index elements based on an exact match of keys: given a
query key q, the hash table H returns the element ⟨k, v⟩ ∈ H such that k = q, or NIL if no such element can
be found.

In many cases, however, we are interested in retrieving keys based on a degree of similarity to a query rather
than equality. Namely, given a query q, we would like to find the elements ⟨k, v⟩ in the container such that
a certain distance function d(q, k) is less or equal to a given threshold τ . There are many applications of
LSH, such as retrieving data by using imperfect keys (e.g., strings containing spelling mistakes) to retrieving
continuous data such as 3D points in computational geometry.

The hash tables introduced in the previous chapter could be used for this purpose, up to minor modifications,
if we could find a hash function h such that h(k) = h(k′) whenever d(k, k′) ≤ τ . Unfortunately, it is clear
that this is generally not not possible. A hash function divides the space of keys into regions corresponding
to different slots, and two keys k and k′ may end up across the boundary of two such regions while being
very close to each other. In fact, when the keys are high dimensional objects, such as large vectors, this is
quite likely to happen. To visualize this, draw random 2D points on a sheet of paper and divide them by
drawing a grid: some points will be close to each other while still falling across grid boundaries.

The overall result is a hashing algorithm that occasionally fails to retrieve matching keys even when they are
present in the table, but in other cases works correctly and efficiently – we say that the algorithm is correct
only with a certain probability.

Locality-sensitive hashing (LSH) is a technique that can improve the probability that such a hashing algorithm
is correct by combining several hash tables. To do this, consider a new data structure L with an array L.H[i]
of ℓ hash tables, one for each index i = 1, . . . , ℓ. We make use of two types of hash functions for each table:

• The functions gi mapping the (continuous) keys k to discrete quantities gi : k 7→ k̂ ∈ K̂ that are suitable
for insertion in a standard hash table from the previous chapter;

• And the hash function h : K̂ → {0, . . . , m − 1} used by the standard hash tables L.H[i] as in the
previous chapter (we share one such function for all tables).

Fundamental to the analysis of correctness of the LSH are the functions gi that convert continuous keys to
discrete ones because, after discretization, the hash tables L.H[i] work deterministically (i.e., always correctly)
as in the previous chapter.

The LSHInsert algorithm inserts a new key k into all of the ℓ hash tables, each using a different function
gi for discretization. Because two different keys k and k′ can be mapped to the same discretized key
k̂ = gi(k) = gi(k′), the hash table L.H[i] contains pairs ⟨k̂, S⟩ where S is the set of keys added to the table
that share the same discretization. This explains lines 2-5 in the following pseudo-code for LSHInsert:

LSHInsert(L, k) :

103

104 APPENDIX B. LOCALITY-SENSITIVE HASHING (OPTIONAL)

1. For i = 1, . . . , ℓ:
1. Let k̂ ← gi(k).
2. Let S ← HashRetrieve(L.H[i], k̂).
3. If S = NIL then set S ← {} (empty set).
4. Set S ← S ∪ {k}.
5. Call HashInsert(L.H[i], k̂, S).

Given a query q, we would like to retrieve a key k in the container that matches q up to a threshold τ , i.e.,
d(q, k) ≤ τ . In practice, we relax the threshold by multiplying it by a factor c ≥ 1 and seek for a looser match
d(q, k) ≤ cτ , which will be useful later to characterize the correctness of the algorithm.

The retrieval function LSHRetrieve scans the hashed keys in a manner similar to LSHInsert. It has two
parameters: the relaxed threshold cτ and a maximum number of distance evaluations m to perform. It
compares the query q to the keys until either a key within distance cτ to the query is found or until m
distance evaluations have been performed, after which it gives up:

LSHRetrieve(L, q, cτ, m) :

1. For i = 1, . . . , ℓ:
1. q̂ ← gi(q).
2. S ← HashRetrieve(L.H[i], q).
3. Check the keys in k ∈ S (in any order) and immediately stop and return k if d(q, k) ≤ cτ ;

otherwise, stop and return NIL as soon as m comparisons have been performed overall.
2. Return NIL.

Assuming that HashRetrieve has constant cost Θ(1), the cost of LSHRetrieve is O(ℓ + m), as at most ℓ
hash tables are visited and at most m distance evaluations are performed.

B.1 Correctness analysis
The question is whether LSHRetrieve successfully retrieves the desired key. Differently from the algorithms
seen so far, the answer is “often”. Namely, we do not expect the algorithm to always work, but to work with
a high probability.

Answering the question of correctness requires then making suitable statistical assumptions on the functions
gi:

Locality Sensitive Hashing (LSH) family

A distribution g ∼ G over functions forms a LSH family if, and only if: 1. For all close keys
d(k, k′) ≤ τ the collision probability P [g(k) = g(k′)] ≥ p1 is large. 2. For all far keys d(k, k′) > cτ
the collision probability P [g(k) = g(k′)] ≤ p2 is small.

The LSH family is thus characterized by parameters (p1, p2, τ, c) where p1 > p2 are two probabilities,
τ > 0 is the distance threshold, and c ≥ 1 is the relaxation factor for the threshold.

A key k can thus be in three relationships with respect to a given query q: * The key k is close to the query
q if d(q, k) ≤ τ ; * The key k is not far from the query q if d(q, k) ≤ cτ ; * The key k is far from the query q
if d(q, k) > cτ .

Consider now a set of keys (k1, . . . , kn) and a query q. The container L is obtained by first sampling ℓ
functions from the LSH family G and then using LSHInsert to add the n keys to L. We can obtain different
versions of the container L by repeating this procedure. Next, we analyze the behavior of the LSHRetrieve
in expectation over all the containers L obtained in this manner.

LSH retrieval (theorem)

Let G be a LSH family with parameters (p1, p2, τ, c), let k1, . . . , kn be a fixed set of keys and let
q be a fixed query. Futhermore, let L be the container obtained by hashing the keys using a
particular sample g1, . . . , gℓ ∼ G of functions. Then:

B.1. CORRECTNESS ANALYSIS 105

1. Calling LSHRetrieve(L, q, cτ, m) always terminates after at most m distance computations.
2. If all keys ki are far from the query q (i.e., d(q, ki) > cτ), then this call always return NIL.
3. If there is a key ki close to the query (i.e., d(q, ki) ≤ τ), then this call returns a key kj not far

from the query (i.e., d(q, kj) ≤ cτ) with probability at least

Psuccess ≥ 1− (1− p1)ℓ − nℓ

m
p2.

Otherwise, the call returns NIL.

Given the theorem above, the trick is to choose parameters such that Psuccess is large enough. For example,
the following choice for the parameters results in a probability of success of at least 1/3:

1. ℓ = n
log p1
log p2

2. m = 4ℓ
3. p2 = 1

n

To see why this choice works, note that:

p1 = nlogn p1 = n
log p1
log n = n− log p1

log p2 = 1

n
log p1
log p2

.

Hence, plugging back this expression in the one for the probability of success, we obtain:

Psuccess ≥ 1−
(

1− 1

n
log p1
log p2

)n
log p1
log p2

− nℓ

m
p2 ≥ 1− 1

e
− 1

4 ≥
1
3

where we used the fact that (1− 1/a)a ≤ 1/e for all a ≥ 1.

In the construction above, we are free to choose parameters ℓ and m as we wish. However, parameters
(p1, p2, c, τ) depend on the family G of LSH functions, on which we have less control. In particular, it is not
obvious that we can assume p2 = 1/n, as n is the number of keys stored in L which is independent of G.

The following amplification trick can be used to modify a given LSH family G until the desired probability
value p2 is obtained. Suppose that we are given a LSH family G with fixed parameters (p1, p2, c, τ). Then,
we can construct a new family G′ where each function g′ = (g1, . . . , gk) is obtained by stacking the output of
k functions sampled from the original family G. This new family has parameters (pk

1 , pk
2 , c, τ) because the

probability of a collision now requires k original functions to collide simultaneously.

By using amplification, we can start from an arbitrary LSH family G and obtain a new family for which the
probabilities are as low as we like. Specifically, we can pick k large enough to satisfy the conditions above by
setting:

pk
2 ≤

1
n
⇒ k =

⌈
− log n

log p2

⌉
.

The final piece of the puzzle is how to construct an LSH family G. In general, the construction depends on
which distance measure d(k, k′) one wants to use for retrieval. For example, assume that the keys k, k′ ∈ RD

are vectors and consider the cosine distance:

d(k, k′) = 1− ⟨k, k′⟩
|k| · |k′|

.

Thus the distance between k and k′ is zero if the two vectors are aligned. This measure is often used in
applications such as text or image retrieval. We can construct an LSH family G for the cosine distance by
defining:

gi(k) = sign⟨vi, k⟩

106 APPENDIX B. LOCALITY-SENSITIVE HASHING (OPTIONAL)

where vi ∈ Rd is a uniformly-sampled unit vector. It can be shown1 that the probability of a collision is
inversely proportional to the cosine distance via the formula:

P [gi(k) = gi(k′)] = 1− 1
π

arccos(1− d(k, k′)).

By plugging values τ and cτ for the value fo the distance into this formula, wes find that this is a LSH family
with parameters (p1, p2, c, τ) where

p1 = 1− 1
π

arccos(1− τ), p2 = 1− 1
π

arccos(1− cτ).

B.2 Proof of the LSH retrieval theorem (optional)
Parts (1) and (2) are obvious. For case (3), the two following conditions are together sufficient for LSHRetrieve
to return a relaxed match:

1. The first condition is that there is a collision gi(q) = gi(k∗) between the query q and the close key k∗ for
at least one of the functions gi.

The probability that a specific gi results in a collision is at least p1 by assumption. Thus, the probability
that none of the gi results in a collision is at most (1 − p1)ℓ. Hence, the probability that at least one
collision occurs between g1, . . . , gℓ is:

P1 ≥ 1− (1− p1)ℓ.

In this case, LSHRetrieve will find and return a key not far from the query provided that it is allowed to
check enough collisions. This is because it will eventually check the hash table where the close key k∗ is
stored. However, the algorithm stops after checking at most m collisions, which may be too soon. The
next condition ensures that this is not the case.

2. The second condition is that strictly less than m of the key comparisons that the algorithm can perform
are with keys far from the query. If this is the case, the algorithm must find and return a key not far
from the query before hitting the limit of m comparisons, provided that one exits (which is given by the
first condition).

The total number of comparisons with far keys is given by:

M =
∑

k:d(q,k)≥cτ

ℓ∑
i=1

1[gi(q) = gi(k)]

The expected value of M over the choice of functions gi is bounded by:

E[M] =
∑

k:d(q,k)≥cτ

ℓ∑
i=1

E[1[gi(q) = gi(k)] ≤
∑

k:d(q,k)≥cτ

ℓp2 ≤ nℓp2

Using Markov inequality P [X ≥ α] ≤ E[X]/α, we can use this expected value to bound the probability
that M is at least as large as m:

P [M ≥ m] ≤ nℓp2

m
.

Hence, the probability that M < m is:

P2 = P [M < m] = 1− P [M ≥ m] ≥ 1− nℓp2

m
.

The probability that LSHRetrieve fails to find a match is is at most the sum of probabilities that the
individual conditions above fail separately, i.e. Pfail ≤ (1− P1) + (1− P2). The probability of success is thus
at least

Psuccess ≥ 1− ((1− P1) + (1− P2)) = 1− (1− p1)ℓ − nℓ

m
p2

Q.E.D.
1http://www-math.mit.edu/~goemans/PAPERS/maxcut-jacm.pdf

http://www-math.mit.edu/~goemans/PAPERS/maxcut-jacm.pdf

B.3. C++ IMPLEMENTATION OF AN LSH TABLE (OPTIONAL) 107

B.3 C++ implementation of an LSH table (optional)
For completeness, we provide an example implementation of an LSH table in C++.

The implementation assumes that keys and queries (of type data_t) are float vectors of a given dimension
data_dimension. The distance function is set to the cosine distance introduced above; likewise, we use the
corresponding LSH family, using amplification in order to transform binary hashes into hashes of r bits,
encoded as integers of type code_t.

The LSHTable class builds oon the HashTable class from the previous chapter, which take as input codes of
type code_t. The LSH functions map input vectors data_t to corresponding discrete codes code_t.

The code benchmarks the implementation by setting the retrieval threshold τ to 0. In this case, the LSH
table returns the closest key to a given test query within a set number m of comparison. The idea is to
compare the LSH table against the baseline linear search in terms of number of comparisons performed (which
provides an upper bound on the speed up) and distance of the retrieved key (which is generally worse than
the distance obtained by an exhaustive search).

File lsh_driver.cpp:
1 #include <hash.hpp>
2 #include <utils.hpp>
3

4 #include <array>
5 #include <cmath>
6 #include <cstdint>
7 #include <functional>
8 #include <iomanip>
9 #include <iostream>

10 #include <limits>
11 #include <random>
12 #include <type_traits>
13 #include <vector>
14

15 constexpr size_t data_dim = 3;
16 constexpr size_t dataset_size = 10'000;
17 constexpr size_t queryset_size = 1'000;
18

19 using data_t = std::array<double, data_dim>; // keys and queries
20 using code_t = uint32_t; // codes for the keys, output by the LSH functions
21

22 constexpr auto inf =
23 std::numeric_limits<data_t::value_type>::infinity(); // shorthand
24 constexpr auto random_seed = 0; // for reproducibility
25

26 // Sample a vector on the unit hypersphere.
27 data_t sample_unit_vector()
28 {
29 static std::mt19937 gen{random_seed};
30 static std::normal_distribution<> normal{0, 1};
31 data_t vec{};
32 data_t::value_type norm2 = 0;
33 for (auto &x : vec) {
34 x = normal(gen);
35 norm2 += x * x;
36 }

108 APPENDIX B. LOCALITY-SENSITIVE HASHING (OPTIONAL)

37 data_t::value_type norm = sqrt(norm2);
38 for (auto &x : vec) {
39 x /= norm;
40 }
41 return vec;
42 }
43

44 // Sample a collection of unit vectors.
45 std::vector<data_t> sample_dataset(size_t num_data)
46 {
47 std::vector<data_t> dataset;
48 dataset.reserve(num_data);
49 while (num_data--) {
50 dataset.emplace_back(sample_unit_vector());
51 }
52 return dataset;
53 }
54

55 // Cosine distance function between vectors (must be non-zero).
56 data_t::value_type cosine_distance(const data_t &vec1, const data_t &vec2)
57 {
58 data_t::value_type xnorm2 = 0;
59 data_t::value_type ynorm2 = 0;
60 data_t::value_type dot = 0;
61 auto xi = std::begin(vec1);
62 auto yi = std::begin(vec2);
63 while (xi != std::end(vec1)) {
64 auto x = *xi++;
65 auto y = *yi++;
66 xnorm2 += x * x;
67 ynorm2 += y * y;
68 dot += x * y;
69 }
70 auto den = sqrt(xnorm2 * ynorm2);
71 return 1 - dot / den;
72 }
73

74 // A LSH function maps data_t (keys) to code_t (codes)
75 using lsh_function_t = std::function<code_t(const data_t &)>;
76

77 // Sample a binary LSH function of the type f(x) = sign(<w, x>).
78 lsh_function_t sample_lsh_function()
79 {
80 auto weights = sample_unit_vector();
81 return [=](const data_t &vec) -> code_t {
82 data_t::value_type dot = 0;
83 auto wi = std::begin(weights);
84 auto xi = std::begin(vec);
85 while (wi != std::end(weights)) {
86 dot += (*wi++) * (*xi++);
87 }
88 return dot >= 0 ? 1 : 0;
89 };

B.3. C++ IMPLEMENTATION OF AN LSH TABLE (OPTIONAL) 109

90 }
91

92 // Sample a LSH function of the type F(x) = [f1(x), f2(x), ...,
93 // fr(x)]. The pattern must fit in an integer of type `code_t`.
94 lsh_function_t sample_amplified_lsh_function(size_t r)
95 {
96 assert(1 <= r && r <= std::numeric_limits<code_t>::digits);
97 std::vector<lsh_function_t> functions;
98 while (r--) {
99 functions.push_back(sample_lsh_function());

100 }
101

102 return [=](const data_t &vec) -> code_t {
103 code_t code = 0;
104 for (const auto &function : functions) {
105 code = (code << 1) | function(vec);
106 }
107 return code;
108 };
109 }
110

111 // A class representinig a LSH family.
112 struct lsh_family_t {
113 size_t amplification;
114

115 // Return a function sampled from the LSH faimly.
116 lsh_function_t operator()() const
117 {
118 return sample_amplified_lsh_function(amplification);
119 }
120 };
121

122 // A policy specifynig a hash function mappnig codes to slots.
123 struct hash_policy_t {
124 int operator()(code_t code) const { return code; }
125 };
126

127 // A policy specifynig a distance function between data points.
128 struct distance_policy_t {
129 using value_type = data_t::value_type;
130 value_type operator()(const data_t &vec1, const data_t &vec2)
131 {
132 return cosine_distance(vec1, vec2);
133 }
134 };
135

136 // The LSH table class.
137 template <class K, class D, class G, class H> class LSHTable
138 {
139 public:
140 // A retrieval result: distance, key and number of key-query comparisons
141 // performed.
142 struct result_t {

110 APPENDIX B. LOCALITY-SENSITIVE HASHING (OPTIONAL)

143 typename D::value_type distance;
144 const K *key;
145 size_t num_comparisons;
146 };
147

148 // Create a LSH table using `num_tables` hash tables, each using
149 // `num_chains` chains. Data are addedd to the hash table encooded via
150 // functions sampled from the `lsh_family`.
151 template <class GF>
152 LSHTable(size_t num_chains, size_t num_tables, GF lsh_family)
153 {
154 while (num_tables--) {
155 tables.push_back(H{num_chains});
156 functions.push_back(lsh_family());
157 }
158 }
159

160 // Add a key to the LSH table.
161 void insert(const K &key)
162 {
163 for (size_t i = 0; i < tables.size(); ++i) {
164 auto code = functions[i](key);
165 auto *retrieved = tables[i].get(code);
166 if (retrieved == nullptr) {
167 tables[i].insert(code, {key});
168 } else {
169 retrieved->push_back(key);
170 }
171 }
172 }
173

174 // Search for a key within a distance `tau` of the `query`.
175 // At most `m` key-query comparisons are performed, after which the serach
176 // stops, returning the closetst match found even if the distance is still
177 // larger than `tau`. If no matchnig key can be found
178 // at all, the search stops with a distance equal to infinity.
179 // Setting `tau` to zero can be used to find the closest key to the query
180 // found in the alloted number of comparisons.
181 result_t get(const K &query, int m = 1, data_t::value_type tau = 0)
182 {
183 auto result = result_t{inf, nullptr, 0};
184 auto distance_function = D{};
185 for (size_t i = 0; i < tables.size(); ++i) {
186 auto code = functions[i](query);
187 auto *retrieved = tables[i].get(code);
188 if (retrieved == nullptr) {
189 continue;
190 }
191 for (const auto &key : *retrieved) {
192 auto distance = distance_function(key, query);
193 if (distance < result.distance) {
194 result.distance = distance;
195 result.key = &key;

B.3. C++ IMPLEMENTATION OF AN LSH TABLE (OPTIONAL) 111

196 }
197 if (++result.num_comparisons >= (unsigned)m) {
198 goto give_up;
199 }
200 if (result.distance <= tau) {
201 break;
202 }
203 }
204 }
205 give_up:
206 return result;
207 }
208

209 private:
210 std::vector<H> tables;
211 std::vector<G> functions;
212 };
213

214 // Concrete instantiation of a LSH table and corresponding hash table.
215 using hash_table_t = HashTable<code_t, std::vector<data_t>, hash_policy_t>;
216

217 using lsh_table_t =
218 LSHTable<data_t, distance_policy_t, lsh_function_t, hash_table_t>;
219

220 using result_t = lsh_table_t::result_t;
221

222 // Linear search through the dataset.
223 template <class D>
224 result_t naive_retrieve(const std::vector<data_t> &dataset, const data_t &query)
225 {
226 auto result = result_t{inf, nullptr, 1};
227 D distance_function{};
228 for (const auto &key : dataset) {
229 data_t::value_type distance = distance_function(key, query);
230 result.num_comparisons++;
231 if (distance < result.distance) {
232 result.distance = distance;
233 result.key = &key;
234 }
235 }
236 return result;
237 }
238

239 // Benchmkar a retrieval function `get`.
240 template <typename F>
241 std::tuple<double, double, double> benchmark(const std::vector<data_t> &queries,
242 F get)
243 {
244 double d = 0;
245 double d2 = 0;
246 size_t n = 0;
247 size_t nok = 0;
248 for (const auto &query : queries) {

112 APPENDIX B. LOCALITY-SENSITIVE HASHING (OPTIONAL)

249 auto distance = get(query);
250 if (std::isfinite(distance)) {
251 d += distance;
252 d2 += distance * distance;
253 nok += 1;
254 }
255 n += 1;
256 }
257 double mean = d / nok;
258 double variance = d2 / nok - mean * mean;
259 return {mean, variance, (double)nok / n};
260 }
261

262 int main(int argc, char **argv)
263 {
264 auto dataset = sample_dataset(dataset_size);
265 auto queries = sample_dataset(queryset_size);
266

267 // clang-format off
268 #define print_result (nt, nc, r, sp, mean, stddev, rate, rel) \
269 std::cout \
270 << "| " << std::setw(7) << std::left << nt \
271 << " | " << std::setw(7) << std::left << nc \
272 << " | " << std::setw(7) << std::left << r \
273 << " | " << std::setw(10) << std::setprecision(3) << std::left << std::defaultfloat << mean \
274 << " " << std::setw(10) << std::setprecision(3) << std::left << std::defaultfloat << stddev \
275 << " | " << std::setw(7) << std::setprecision(1) << std::left << std::defaultfloat << sp \
276 << " | " << std::setw(6) << std::setprecision(1) << std::fixed << std::right << rate \
277 << " | " << std::setw(6) << std::setprecision(1) << std::fixed << std::right << rel \
278 << "|" << std::endl;
279 // clang-format oon
280

281 print_result("#tables", "#comp.", "amplif.", "speedup", "distance", "(stddev)", "succ.", "rel d.");
282 print_result("-", "-", "-", "-", "-", "", "-", "-");
283

284 // Baseline: scan all keys.
285 double best;
286 {
287 auto result = benchmark(queries, [&](const data_t &query) -> double {
288 return naive_retrieve<distance_policy_t>(dataset, query).distance;
289 });
290 print_result("-", dataset_size, "-", 1, std::get<0>(result),
291 std::get<1>(result) / sqrt(queryset_size),
292 std::get<2>(result), 1);
293 best = std::get<0>(result);
294 }
295

296 // LSH tables.
297 for (size_t num_comparisons : {1, 10, 100, 1000}) {
298 for (size_t num_tables : {1, 2, 3}) {
299 for (size_t amplification : {1, 4, 8, 16, 32}) {
300

301 // Build the LSH table.

B.3. C++ IMPLEMENTATION OF AN LSH TABLE (OPTIONAL) 113

302 size_t num_chains = std::min(1UL << amplification, 256UL);
303 lsh_table_t lsh_table{num_chains, num_tables,
304 lsh_family_t{amplification}};
305 for (const auto &key : dataset) {
306 lsh_table.insert(key);
307 }
308

309 // Query the LSH table.
310 auto result =
311 benchmark(queries, [&](const data_t &query) -> double {
312 return lsh_table.get(query, num_comparisons, 0)
313 .distance;
314 });
315

316 print_result(
317 num_tables, num_comparisons, amplification,
318 (double)dataset_size / num_comparisons, std::get<0>(result),
319 std::get<1>(result) / sqrt(queryset_size),
320 std::get<2>(result) * 100, std::get<0>(result) / best);
321 }
322 }
323 }
324

325 return 0;
326 }

#tables	#comp.	amplif.	distance (stddev)	speedup	succ.	rel d.
-	10000	-	0.000199 1.25e-09	1	1.0	1
1	1	1	0.757 0.00847	1e+04	100.0	3810.7
1	1	4	0.375 0.00368	1e+04	100.0	1888.0
1	1	8	0.13 0.000814	1e+04	100.0	655.7
1	1	16	0.0417 0.000107	1e+04	99.9	210.0
1	1	32	0.0116 8.21e-06	1e+04	99.5	58.2
2	1	1	0.726 0.00793	1e+04	100.0	3654.1
2	1	4	0.374 0.0048	1e+04	100.0	1880.9
2	1	8	0.152 0.00172	1e+04	100.0	765.1
2	1	16	0.0655 0.000343	1e+04	100.0	329.7
2	1	32	0.0132 1.07e-05	1e+04	100.0	66.2
3	1	1	0.626 0.00625	1e+04	100.0	3150.6
3	1	4	0.342 0.00372	1e+04	100.0	1720.2
3	1	8	0.202 0.00132	1e+04	100.0	1014.4
3	1	16	0.0384 0.00011	1e+04	100.0	193.4
3	1	32	0.0106 7.84e-06	1e+04	100.0	53.4
1	10	1	0.123 0.000595	1e+03	100.0	620.1
1	10	4	0.0377 0.00012	1e+03	100.0	189.7
1	10	8	0.0115 8.68e-06	1e+03	100.0	58.0
1	10	16	0.0045 1.44e-06	1e+03	99.6	22.7
1	10	32	0.00145 4.04e-07	1e+03	98.6	7.3
2	10	1	0.0915 0.000221	1e+03	100.0	460.8
2	10	4	0.036 5.16e-05	1e+03	100.0	181.4
2	10	8	0.0197 2.79e-05	1e+03	100.0	99.4
2	10	16	0.00368 7.68e-07	1e+03	100.0	18.5
2	10	32	0.00122 1.52e-07	1e+03	99.9	6.2

114 APPENDIX B. LOCALITY-SENSITIVE HASHING (OPTIONAL)

3	10	1	0.111 0.000365	1e+03	100.0	558.4
3	10	4	0.0319 4.99e-05	1e+03	100.0	160.6
3	10	8	0.00973 5.79e-06	1e+03	100.0	49.0
3	10	16	0.00629 5.33e-06	1e+03	100.0	31.6
3	10	32	0.00142 3.85e-07	1e+03	100.0	7.1
1	100	1	0.0104 3.24e-06	1e+02	100.0	52.3
1	100	4	0.0028 3.51e-07	1e+02	100.0	14.1
1	100	8	0.00115 7.7e-08	1e+02	100.0	5.8
1	100	16	0.000353 8.92e-09	1e+02	99.9	1.8
1	100	32	0.000279 7.04e-09	1e+02	98.7	1.4
2	100	1	0.0108 3.8e-06	1e+02	100.0	54.1
2	100	4	0.00261 3.08e-07	1e+02	100.0	13.1
2	100	8	0.00156 1.51e-07	1e+02	100.0	7.8
2	100	16	0.000417 9.95e-09	1e+02	100.0	2.1
2	100	32	0.000216 1.93e-09	1e+02	99.8	1.1
3	100	1	0.0108 4.08e-06	1e+02	100.0	54.3
3	100	4	0.00215 1.57e-07	1e+02	100.0	10.8
3	100	8	0.00116 7.19e-08	1e+02	100.0	5.8
3	100	16	0.000359 7.85e-09	1e+02	100.0	1.8
3	100	32	0.00023 2.06e-09	1e+02	100.0	1.2
1	1000	1	0.00106 3.51e-08	1e+01	100.0	5.3
1	1000	4	0.00031 3.33e-09	1e+01	100.0	1.6
1	1000	8	0.000212 1.61e-09	1e+01	100.0	1.1
1	1000	16	0.000239 2.96e-09	1e+01	100.0	1.2
1	1000	32	0.000275 5.64e-09	1e+01	98.6	1.4
2	1000	1	0.00108 3.77e-08	1e+01	100.0	5.4
2	1000	4	0.000334 3.99e-09	1e+01	100.0	1.7
2	1000	8	0.000221 1.79e-09	1e+01	100.0	1.1
2	1000	16	0.000203 1.39e-09	1e+01	100.0	1.0
2	1000	32	0.000226 4.36e-09	1e+01	100.0	1.1
3	1000	1	0.00108 3.63e-08	1e+01	100.0	5.4
3	1000	4	0.000325 3.98e-09	1e+01	100.0	1.6
3	1000	8	0.0002 1.33e-09	1e+01	100.0	1.0
3	1000	16	0.000199 1.25e-09	1e+01	100.0	1.0
3	1000	32	0.0002 1.3e-09	1e+01	100.0	1.0

	Introduction
	Problems and algorithms [revision]
	Correctness
	Complexity

	Sorting in quasilinear and linear time
	Merge sort [revision]
	A lower bound on the complexity of sorting
	Sorting in linear time

	Elementary data structures
	Passing data by value or reference
	Arrays
	Stacks
	Queues
	Linked lists

	Binary trees
	Size and height of a binary tree
	Elementary representation
	Traversing a tree: depth and breadth first
	Binary search trees
	An alternative representation of complete trees

	Heaps
	Restoring the heap property
	Building a heap
	HeapSort
	Priority queues

	Hashing
	Hashing via chaining
	Average cost analysis of hashing
	C++ implementation of hash tables
	Designing hash functions
	Proof of theorem H2 (optional)

	Graphs
	Formal definition of graph
	Representing graphs using adjacency matrices and lists
	Weighted graphs
	Paths
	Cycles
	C++ implementation

	Shortest paths
	Definition of shortest path
	Existence of shortest paths
	Optimal substructure of shortest paths
	A compact representation of shortest paths
	Versions of the shortest paths problem
	Bellman-Ford's algorithm for the SSSP
	Floyd-Warshall's algorithm for the APSP
	Dijkstra's algorithm for the SSSP
	Using a priority queue

	Appendix (optional)
	Move semantics
	Universal references

	Locality-sensitive hashing (optional)
	Correctness analysis
	Proof of the LSH retrieval theorem (optional)
	C++ implementation of an LSH table (optional)

