B16 Algorithms and Data Structures 1 - Example Sheet

Andrea Vedaldi

Academic Year 2023-24 (version 2.0)

Contents
Introduction

1 Linear-time sorting
1.1 Radixsort oL e

2 Arrays
2.1 Complexity of ArrayInsert
2.2 Writing ArrayDelete e e

3 Stacks
3.1 Emnhanced stack class
3.2 Reverse Polish calculator

4 Queues
4.1 Enhanced queue class e

5 Lists
5.1 Deleting elements from a list oL

6 Binary trees
6.1 Enhanced BinaryTreeclass
6.2 Minimum and maximum element in a binary search tree
6.3 Traversing the nodes of a BST by non-decreasing value

7 Heaps
7.1 Buildingaheap e
7.2 Building a heap vs sorting L e
7.3 Updating the priority of a queued element Lo

8 Hashing
8.1 Worst case complexity for multiple chaining 0.
8.2 Other usages of hash functions
8.3 Division method for large keys Lo
8.4 Permutation invariance of the division method 0.

9 Graphs
9.1 Shortest paths using the adjacency list representation
9.2 Decoding shortest paths

10 Further examples (optional)
10.1 Inserting movable objects in an array Lo
10.2 Stack with move semantics L

10.3 List iterators e e e e e e e e e 23

Introduction

This is the example sheet for B16 Part 3 Algorithms and Data Structures 1. The sheet involves completing
and running several C++ programs, for which you should start from the code made available here.

1 Linear-time sorting

1.1 Radix sort

Consider non-negative integers of k binary digits each. We can represent each integer as a binary sequence
(ek—1Cp—2---co), where ¢; € {0,1} where c;_1 is the most significant digit.

Informally describe an algorithm that sort a sequence A of n such integers one digit per time, with an overall
cost of O(kn).

Optionally, write a C++ implementation radix_sort.hpp of this algorithm with an interface similar to
merge_sort.hpp and test it using the following C++ driver program. Do this only if you have time as it is
slightly tricky to get right.

File radix_sort_driver.cpp:

#include "radix_sort.hpp"
#include "utils.hpp"

int main(int argc, char **argv)

{
auto A = std::vector<int>{1, 19, 2, 9, 12, 18, 4, 8, 5, 6,
17, 10, 11, 14, 16, 15, 7, 3, 13, 20};
print (A, "Before sorting: ");
radix_sort(begin(A), end(A));
print (A, "After sorting: ");
}

Before sorting: [1, 19, 2, 9, 12, 18, 4, 8, 5, 6, 17, 10, 11, 14, 16, 15, 7, 3, 13, 20]
After sorting: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

2 Arrays

2.1 Complexity of ArrayInsert
What is the Big-O complexity of ArrayInsert?

2.2 Writing ArrayDelete

Design an algorithm ArrayDelete to delete the element at position ¢ in an array A. What is the worst-case
complexity of this algorithm?

Implement the algorithm as a C++ template function void array_delete(std::vector<T>&, size_t) by
completing the file array_delete.hpp:

#ifndef __array_delete__
#define __array_delete__

#include <cstddef>

https://github.com/vedaldi/b16-code

#include <utility>
#include <vector>

template <typename T>
void array_delete(std::vector<T> &A, std::size_t index)

{
// WRITE YOUR CODE HERE
}

#endif // __array_delete__

Use the following test driver array_delete_driver.cpp to test your code:

#include "array.hpp"
#include "array_delete.hpp"
#include "utils.hpp"

int main(int argc, char **argv)

{
auto A = std::vector<float>{0, 1, 2, 3, 4};
print(A, "Initially A = ");
while (!A.empty()) {
array_delete(A, 0);
print (A, "After deleting the element at position 0: A = ");
}
return O;
}

Initially A = [0, 1, 2, 3, 4]

After deleting the element at position 0: A = [1, 2, 3, 4]
After deleting the element at position 0: A = [2, 3, 4]
After deleting the element at position 0: A = [3, 4]

After deleting the element at position 0: A = [4]

After deleting the element at position 0: A = []

3 Stacks

3.1 Enhanced stack class

Starting from the class Stack given in the notes, create a new stack class StackEnhanced with a member
function clear to remove all elements from the stack. Also write an overload of operator<< so that
elements can be pushed onto the stack via a notation like stack << valuel << value2. Write this into the
stack_enhanced.hpp file, by completing as needed:

#ifndef __stack_enhanced___
#define __stack_enhanced___

#include "stack.hpp"

template <typename T> class StackEnhanced : public Stack<T>
{
public:
// Inherit the Stack<T> constructors as they are
// https://en.cppreference.com/w/cpp/language/using_declaration
using Stack<T>::Stack;

20

21

22

23

24

25

void clear()

{
// WRITE YOUR CODE HERE
};

template <typename T>

StackEnhanced<T> &operator<<(StackEnhanced<T> &stack, const T &value)

{
// WRITE YOUR CODE HERE

#endif // __stack_enhanced___

Use the following test driver to test your code.

File stack_enhanced_driver.cpp:

#include "stack.hpp"

#include "stack_enhanced.hpp" // Put your code in this file

#include <iostream>

int main(int argc, char **argv)
{
auto stack = StackEnhanced<int>(100)

stack << 1 << 2 << 3;
stack.clear();
stack << 4 << b << 6;

// Dump the stack content

std::cout << "Stack content:";

while (!stack.empty()) {
std::cout << ' ' << stack.top();
stack.pop() ;

}

std::cout << '\n';

return O;

1

Stack content: 6 5 4

3.2 Reverse Polish calculator

H

The Reverse Polish Notation (RPN) for arithmetic expression lists first the operands and then the operation.
For example, the expression 2 x (2 4 3) is written 2 2 3 + x. In order to evaluate the expression, one reads it
from left to right and immediately replaces any operation and its operands with the corresponding result.
For instance, the expression above evaluates as:

2(23+4) x
25 X
10

https://en.wikipedia.org/wiki/Reverse_Polish_notation

A stack is the ideal data structure to store the intermediate results as an RPN expression is evaluated, because
each operation always involves the last n values computed (i.e., the ones at the top of the stack).

Write functions plus, minus, multiplies, divides and negate to implement a basic RPN calculator. Each
function takes as input a stack containing the state of the calculation and immediately replaces the top one
or two elements with the operation result. Use the following test code to check that your code works.

File stack_rpn_driver.cpp:

#include <iostream>

#include "stack.hpp"
#include "stack_rpn.hpp" // Put your code in this file

int main(int argc, char **argv)
{
// Basic interface
auto stack = Stack<int>(100);
stack.push(2) ;
stack.push(2) ;
stack.push(3);
plus(stack);
multiplies(stack) ;
std::cout << "2 2 2 + % = " << stack.top() << '\n';

// Advanced tinterface (optional)
stack << 2 << 2 << 3 << plus << multiplies;
std::cout << "2 2 2 + * = " << stack.top() << '\n';

return O;

}

222+ %=10
222+ =10

Optionally, also implement the “advanced interface” used in the driver above, where operand and operations
can be entered by using the << symbol (hint: overload operator<<).

4 Queues

4.1 Enhanced queue class

Starting from the class Queue given in the notes, create a new stack class Dequeue (double-ended queue)
with:

1. A member function clear to remove all elements from the queue.
2. A member function enqueue_front to enqueue elements at the front of the queue.
3. A member function dequeue_back to remove elements from the front of the queue.
4. A member function back to access the first element of the queue.

You can start from the following queue_enhanced.hpp file:

#ifndef __queue_enhanced__
#define __queue_enhanced__

#include <cassert>
#include <vector>

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

46

47

48

49

50

51

52

#include "queue.hpp"

template <typename T> class Dequeue : public Queue<T>
{
public:
// Inherit the constructors of Queue<T>
using Queue<T>::Queue;

// Access the element at the back of the queue
T &back()
{

// WRITE YOUR CODE HERE

// Const-access the element at the back of the queue
const T &back() const
{

// WRITE YOUR CODE HERE

// Add a new element to the front of the queue by copying
void enqueue_front(const T &value)

{
// WRITE YOUR CODE HERE
}

// Remove the element at the back of the queue
void dequeue_back()

{
// WRITE YOUR CODE HERE

3

// Remove all elements from the queue
void clear() {

// WRITE YOUR CODE HERE
}

protected:
// Return the indexz of the element at the back of the queue
size_t _tail() const
{
// WRITE YOUR CODE HERE
3
};

#endif // __queue_enhanced__

Use the following test driver to test your code.

File queue_enhanced_driver. cpp:

#include "queue_enhanced.hpp"
#include "utils.hpp"

#include <iostream>

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

int main(int argc, char **argv)

{
// Create a queue with space for a few elements
auto queue = Dequeue<float>(5);

// Keep pushing and popping elements from the dequeue for a while
for (int repetition = 0; repetition < 3; ++repetition) {
std::cout << "Enqueued front";
for (int i = 0; i < 3; ++i) {
queue.enqueue_front (i) ;
std::cout << ' ' << ij

std::cout << "\nDequeued front";

for (int i = 0; i < 3; ++i) {
std::cout << ' ' << queue.front();
queue.dequeue () ;

std::cout << "\nEnqueued back";
for (int i = 0; i < 3; ++i) {
queue.enqueue (i) ;
std::cout << ' ' << i;

std::cout << "\nDequeued back";

for (int i = 0; i < 3; ++i) {
std::cout << ' ' << queue.back();
queue.dequeue_back() ;

}

std::cout << '\n';

return O;

1

Enqueued front 0 1 2
Dequeued front 2 1 0
Enqueued back 0 1 2
Dequeued back 2 1 0
Enqueued front 0 1 2
Dequeued front 2 1 0
Enqueued back 0 1 2
Dequeued back 2 1 0
Enqueued front 0 1 2
Dequeued front 2 1 0
Enqueued back 0 1 2
Dequeued back 2 1 0

5 Lists

5.1 Deleting elements from a list

Starting from the module 1ist.hpp given in the notes, write a 1ist_delete_after function adding it to a
new list_enhanced.hpp module, completing the code below:

#ifndef __list_enhanced__
#define __list_enhanced__

#include "list.hpp"
#include <iostream>

template <typename T> void list_delete_after(Node<T> *node)

{
// WRITE YOUR CODE HERE
}

#endif // __list_enhanced__

Then test it using the following driver.

File 1ist_enhanced_driver.cpp:

#include "list_enhanced.hpp"
#include "utils.hpp"

int main(int argc, char **argv)

{
auto list = Node<float>{};
// Insert some numbers to the front of the list.
auto last = &list;
for (int i = 0; i < 10; ++i) {
last = list_insert_after(last, static_cast<float>(i));
print(list_to_vector(list));
}
// Remove the elements from the beginning of the list.
for (int i = 0; i < 10; ++i) {
list_delete_after(&list);
print(list_to_vector(list));
}
}
(o]
(o, 1]
(o, 1, 2]
[o, 1, 2, 3]
[o, 1, 2, 3, 4]
[o, 1, 2, 3, 4, 5]
[o, 1, 2, 3, 4, 5, 6]
[o, 1, 2, 3, 4, 5, 6, 7]
(o, 1, 2, 3, 4, 5, 6, 7, 8]
[o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[1, 2, 3, 4, 5, 6, 7, 8, 9]
[2, 3, 4, 5, 6, 7, 8, 9]
[3, 4, 5, 6, 7, 8, 9]
[4, 5, 6, 7, 8, 9]
[6, 6, 7, 8, 9]
[6, 7, 8, 9]

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

(7, 8, 9]
(8, 9]
(9]

(]

What is the worst-case complexity of this algorithm?

6 Binary trees

6.1 Enhanced BinaryTree class

Similar to the BinaryTree class given in the notes, write an enhanced binary tree class with a member

function parent () returning the parent of a node. You can start from the file binary_tree_enhanced.hpp
file:

#ifndef __binary_tree_enhanced__
#define __binary_tree_enhanced__

#include <cassert>
#include <vector>
#include <memory>

// A class representing a binary tree

template <typename V> struct BinaryTreeEnhanced {
V _value;
std::unique_ptr<BinaryTreeEnhanced<V>> _left;
std::unique_ptr<BinaryTreeEnhanced<V>> _right;

// WRITE YOUR CODE HERE

friend V &value(BinaryTreeEnhanced *t) { return t->_value; }
friend const V &value(const BinaryTreeEnhanced *t)

{
return t->_left_value;
}
friend BinaryTreeEnhanced #*left(const BinaryTreeEnhanced *t)
{
return t->_left.get();
X
friend BinaryTreeEnhanced *right(const BinaryTreeEnhanced *t)
{
return t->_right.get();
3
friend BinaryTreeEnhanced *parent(const BinaryTreeEnhanced *t)
{
// WRITE YOUR CODE HERE
3

};

// A helper function to build an enhanced binary tree
template <typename V>
std::unique_ptr<BinaryTreeEnhanced<V>>
make_binary_tree_enhanced(const V &value,
std: :unique_ptr<BinaryTreeEnhanced<V>> 1,
std: :unique_ptr<BinaryTreeEnhanced<V>> r)

41

43

44

45

22

23

24

25

26

27

28

29

30

31

32

33

// WRITE YOUR CODE HERE

#endif // __binary_tree_enhanced__

Use the following test driver to test it.

File binary_tree_enhanced_driver.cpp:

#include "binary_tree_enhanced.hpp"
#include "binary_tree_print.hpp"
#include "binary_tree_traversal.hpp"

int main(int argc, char *xargv)

make_binary_tree_enhanced(

make_binary_tree_enhanced(

2.0f, make_binary_tree_enhanced(4.0f, {}, {}),

make_binary_tree_enhanced(

5.0f, {}, make_binary_tree_enhanced(8.0f, {}, {}))),

make_binary_tree_enhanced(

3.0f, make_binary_tree_enhanced(6.0f, {}, {}),
make_binary_tree_enhanced(7.0f, {}, {})));

print_binary_tree(bt.get());

auto action = [](const auto &tree) {
auto p = parent(tree) ;

std::cout << "The parent of " << value(tree) << " is "

std::cout << "Node " << value(tree) << " has no parent\n";

<< value(p) << '\n';

df _traversal(bt.get(), action);

{
auto bt =
1.0f,
std::cout << "Tree:\n";
if (p) {
} else {
}
};
return O;
}
Tree
1 - v
2 -v 3 -v
4 5-v 6 7
8
The parent of 4 is 2
The parent of 2 is 1
The parent of 5 is 2
The parent of 8 is 5
Node 1 has no parent
The parent of 6 is 3

10

The parent of 3 is 1
The parent of 7 is 3

6.2 Minimum and maximum element in a binary search tree

Write a module binary_search_tree_enhanced.hpp defining functions bst_min and bst_max computing
the minimum and maximum element in a BST so that the following test driver works.

You can start from the interface file:

#ifndef __binary_saerch_tree_enhanced__
#define __binary_saerch_tree_enhanced__

#include "binary_search_tree.hpp"

template <typename T> T bst_min(const T &tree)

20

21

22

23

24

25

{
// WRITE YOUR CODE HERE
}
template <typename T> T bst_max(const T &tree)
{
// WRITE YOUR CODE HERE
}

#endif // __binary_saerch_tree_enhanced__

Test it using the following driver.

File binary_search_tree_enhanced_driver.cpp:

#include <iostream>

#include "binary_search_tree_enhanced.hpp"

#include "binary_tree_print.hpp"

int main(int argc, char **argv)

{
std::unique_ptr<BinaryTree<int>> bt;
for (int x : {12, 5, 18, 2, 9, 15, 19, 13, 17}) {
bt = bst_insert(std::move(bt), x);
}
std::cout << "Tree:";
print_binary_tree(bt.get());
std::cout << "\n";
std::cout << "The smallest element is "
<< value(bst_min(bt.get())) << '\n';
std::cout << "The largest element is " << value(bst_max(bt.get()))
<< '\n';
return O;
}

11

5-v 18 -———- v
2 9 15 -v 19
13 17

The smallest element is 2
The largest element is 19

6.3 Traversing the nodes of a BST by non-decreasing value

Design an algorithm to traverse the nodes of a BST by non-decreasing value. You can omit the C++
implementation.

7 Heaps

7.1 Building a heap

In the notes, we have discussed the BuildHeap algorithm, for building a heap given an initial vector A of
values:

BuildHeap(A):

1. Fori = ||A]/2] —1,...,0:
1. Interpret the subarray (A;,..., Aj4j—1) as a complete binary tree S.
2. Call SiftDown(S).

This algorithm builds the heap starting from the leaves of the binary tree and working its way towards the
root. Alternatively, we can build a heap starting from the root and moving towards the leaves. The idea
is to progressively include elements Ay, Ay etc in the heap, which amounts to adding one more leaf to the
corresponding binary tree. Each time this is done, one calls SiftUp on the last element added to restore the
heap property. In pseudo-code:

BuildHeapAlt(A):

1. Fori=1,...,|A| -1
1. Interpret the subarray (Ao, ..., A;) as a complete binary tree T' and let S be the subtree
rooted at A;.
2. Call SiftUp(S).

Discuss the relation between BuildHeapAlt and PriorityEnqueue and compare the complexity of BuildHeap
and BuildHeapAlt.

7.2 Building a heap vs sorting

Discuss whether sorting an array A can be an alternative implementation of BuildHeap.

7.3 Updating the priority of a queued element

Discuss how you could use SiftUp and SiftDown to update the priority of an element in a heap, used as a
priority queue.

8 Hashing

8.1 Worst case complexity for multiple chaining

Counsider n distinct keys kq, ..., k, drawn from a finite set IC, called the universe. We wish to store the
keys in a hash table that uses m chains. Assume that the universe is large, meaning that |[KC| > m - n, and

12

show that it is possible to choose the n keys so that they all hash to the same chain. Discuss what is the
implication on the worst case complexity of retrieving the keys from the resulting hash table.

8.2 Other usages of hash functions

Consider a file such as a photo or a video. Explain how a hash function can be used to create a compact
“signature” of the file to verify its integrity. Specifically, explain how knowledge of the signature can be used
to tell with high probability whether the file has been modified without requiring knowledge of the original
file. Explain how you would choose the size m of the hash space for this application.

8.3 Division method for large keys

Consider the problem of designing a hash function h(k). The division method consists in computing the
remainder h(k) = £ mod m of dividing the key k, regarded as a large natural number, by the number m of
chains. This is convenient because h(k) € [0,...,m — 1] can be used directly to index a chain.

Suppose that the key is a string (cq—1¢q—2 - - - co) where ¢; € [0,255] is a character or byte. Except for very
short strings (¢ < 8), the corresponding number

qg—1
> g1 256"
1=0

does not fit in any of the standard atomic data types such as char, short, int, etc. The size of these data
types is bounded by the size of the underlying CPU registers, which are thus usually up to 64 bit long. The
built-in C++ operator % can be used to compute the remainder for atomic data types, this cannot be used
directly for numbers wider than 64 bits.

Write a function uint32_t hash(const std::string& str, const uint32_t m) that takes as input an
arbitrary long string str and a divisor m and computes

q—1
h(c) = <Z Cg—1—i 256i> mod m
i=0

where ¢ denotes the string str and ¢ is the number of characters in the string.
Hint. Make use of the properties of modular arithmetic:

e a+b mod m= ((a mod m)+ (b mod m)) modm
e ab mod m = ((¢ mod m)- (b mod m)) mod m

8.4 Permutation invariance of the division method

Show that choosing m = 255 in the previous question results in hashes that are invariant to permutation of
the characters in the string (meaning for example that h(ciao) = h(oaic)). Discuss whether this is a desirable
property or not.

9 Graphs

9.1 Shortest paths using the adjacency list representation

Starting from the code given in the notes, write a version of the Bellman-Ford and Dijkstra algorithms that
use the adjacency list representation of a graph instead of the adjacency matrix representation, as given in
the notes. In particular, implement the following functions.

File shortest_paths_sparse.hpp:

13

20

21

22

23

24

25

26

27

28

29

30

31

32

33

#ifndef __shortest_paths_sparse__
#define __shortest_paths_sparse__

#include "graph.hpp"

std: :vector<hop_t> bellman_ford(const SparseGraph &graph, const int source,
bool &has_negative_cycle) ;

std: :vector<hop_t> dijkstra(const SparseGraph &graph, const int source) ;
#endif // __shortest_paths_sparse__

You can start from the following shortest_paths_sparse.cpp template:

#include "shortest_paths_sparse.hpp"
#include <priority_queue.hpp>

#include <cmath>

std: :vector<hop_t> bellman_ford(const SparseGraph &graph, const int source,
bool &has_negative_cycle)
{

const int V = static_cast<int>(graph.size());
auto DP = std::vector<hop_t>(V, {inf, -1});
// WRITE YOUR CODE HERE
return DP;
struct triplet_t {
float d;
int r;
int v;
std: :vector<hop_t> dijkstra(const SparseGraph &graph, const int source)

assert(source >= 0);
assert(source < (signed)graph.size());

auto DP = std::vector<hop_t>(graph.size(), {inf, -1});
// WRITE YOUR CODE HERE

return DP;

}

Use the following driver to test them.

File shortest_paths_sparse_driver.cpp:

#include "shortest_paths_sparse.hpp"
#include <utils.hpp>

int main(int argc, const char *argvl[])

14

20

21

22

23

24

25

26

27

28

auto graph = sparse_test_graph;
print_graph(graph) ;

{
int source = 2;
bool has_negative_cycle;
std: :cout << "Bellman-Ford from source " << source
<< std::endl;
auto DP = bellman_ford(graph, source, has_negative_cycle);
print (DP) ;
std::cout << std::endl;
}
{
int source = 2;
std::cout << "Dijkstra from source " << source << std::endl;
auto DP = dijkstra(graph, source);
print (DP) ;
std::cout << std::endl;
}
return O;

}

Are these implementations better for sparse graph?

9.2 Decoding shortest paths

Our shortest paths algorithms encode the shortest paths as a pair of vectors (or matrices) D and P, both
coded in a single vector DP of type std: :vector<hop_t>, where each hop_t element contains a pair (D, P,).

Write a module shortest_path_decode.hpp defining a function:

std: :vector<int> decode(const std::vector<hop_t> &DP, int v);

You can start from the following shortest_paths_decode.hpp template:

#ifndef __shortest_paths_decode__
#define __shortest_paths_decode__

#include "graph.hpp"
#include <algorithm>
#include <vector>

inline std::vector<int> decode(const std::vector<hop_t> &DP, int v)
{
// WRITE YOUR CODE HERE

#endif // __shortest_paths_decode__

that takes DP and a destination vertex v index and returns the path from the source to the destination as a
vector of vertex indices. Use the following test driver to test it.

File shortest_paths_fw_decode_driver.cpp:

15

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

#include
#include
#include

#include
#include
#include

<algorithm>
<iostream>
<vector>

"shortest_paths_decode.hpp"
"shortest_paths_fw.hpp"
<utils.hpp>

int main(int argc, const char *argvl[])

{
Graph graph = test_graph;
print_graph(graph) ;
std::cout << "Floyd-Warshall ASPS" << std::endl;
auto DP = floyd_warshall(graph) ;
for (const auto &row : DP) {
print (row) ;
}
std::cout << std::endl;
for (int u = 0; u < (signed)graph.size(); ++u) {
for (int v = 0; v < (signed)graph.size(); ++v) {
auto path = decode(DP[ul, v);
if (path.size()) {
std::cout << "Shortest path " << u << " ~~> " <K< vy
<< " (weight " << DP[u] [v].weight << "): ";
print (path) ;
}
Ig
return O;
}
digraph G {
0 -> 1 [label= 4];
0 -> 7 [label= 8];
1 -> 7 [label= 11];
2 -> 5 [label= 4];
2 -> 8 [label= 2];
3 -> 4 [label= 9];
3 -> 5 [label= 14];
4 -> 5 [label= 10];
5 -> 6 [label= 2];
6 -> 3 [label= 3];
6 -> 7 [label= 1];
6 -> 8 [label= 6];
7 -> 8 [label= 7];
}

Floyd-Warshall ASPS

[(0:_1) s

(4,00, (inf,-1), (@inf,-1), (inf,-1), (inf,-1), (inf,-1),

((inf,-1), (0,-1), (inf,-1), (inf,-1), (inf,-1), (inf,-1),

16

(inf:_l) >

(8,0),

(11,1),

(15,71

(18,7)]

((inf,-1), (inf,-1), (0,-1), (9,6), (18,3), (4,2), (6,5),

[(inf,-1), (inf,-1), (inf,-1), (0,-1), (9,3), (14,3), (16,5),
[(inf,-1), (inf,-1), (inf,-1), (15,6), (0,-1), (10,4), (12,5),
[(inf,-1), (inf,-1), (inf,-1), (5,6), (14,3), (0,-1), (2,5),
[(inf,-1), (inf,-1), (inf,-1), (3,6), (12,3), (17,3), (0,-1),
[(inf,-1), (inf,-1), (inf,-1), (inf,-1), (inf,-1), (inf,-1),
[(inf,-1), (inf,-1), (inf,-1), (inf,-1), (inf,-1), (inf,-1),

Shortest path 0 ~~> 1 (weight 4): [0, 1]
Shortest path 0 ~~> 7 (weight 8): [0, 7]
Shortest path 0 ~~> 8 (weight 15): [0, 7, 8]
Shortest path 1 ~~> 7 (weight 11): [1, 7]
Shortest path 1 ~~> 8 (weight 18): [1, 7, 8]
Shortest path 2 ~~> 3 (weight 9): [2, 5, 6, 3]
Shortest path 2 ~~> 4 (weight 18): [2, 5, 6, 3, 4]
Shortest path 2 ~~> 5 (weight 4): [2, 5]
Shortest path 2 ~~> 6 (weight 6): [2, 5, 6]
Shortest path 2 ~~> 7 (weight 7): [2, 5, 6, 7]
Shortest path 2 ~~> 8 (weight 2): [2, 8]
Shortest path 3 ~~> 4 (weight 9): [3, 4]
Shortest path 3 ~~> 5 (weight 14): [3, 5]
Shortest path 3 ~~> 6 (weight 16): [3, 5, 6]
Shortest path 3 ~~> 7 (weight 17): [3, 5, 6, 7]
Shortest path 3 ~~> 8 (weight 22): [3, 5, 6, 8]
Shortest path 4 ~~> 3 (weight 15): [4, 5, 6, 3]
Shortest path 4 ~~> 5 (weight 10): [4, 5]
Shortest path 4 ~~> 6 (weight 12): [4, 5, 6]
Shortest path 4 ~~> 7 (weight 13): [4, 5, 6, 7]
Shortest path 4 ~~> 8 (weight 18): [4, 5, 6, 8]
Shortest path 5 ~~> 3 (weight 5): [5, 6, 3]
Shortest path 5 ~~> 4 (weight 14): [5, 6, 3, 4]
Shortest path 5 ~~> 6 (weight 2): [5, 6]
Shortest path 5 ~~> 7 (weight 3): [5, 6, 7]
Shortest path 5 ~~> 8 (weight 8): [5, 6, 8]
Shortest path 6 ~~> 3 (weight 3): [6, 3]
Shortest path 6 ~~> 4 (weight 12): [6, 3, 4]
Shortest path 6 ~~> 5 (weight 17): [6, 3, 5]
Shortest path 6 ~~> 7 (weight 1): [6, 7]
Shortest path 6 ~~> 8 (weight 6): [6, 8]
Shortest path 7 ~~> 8 (weight 7): [7, 8]

10 Further examples (optional)

All these examples are optional. Do them if you want to develop a better understanding of certain advanced

features of the C++ language.

10.1 Inserting movable objects in an array

The implementation of array_insert given in the notes is quite inefficient as it requires copying elements in
the array. While the complexity of the algorithm cannot be improved without switching to a different data
structure, we can at least make the implementation faster by moving instead of copying the array elements.

Write a function

17

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

template <typename T>
void array_insert_movable(std::vector<T>% A, size_t index, T&& x);

that uses move operations instead of copy operations whenever possible.

In order to test this function, you can use the Movable type provided in probes.hpp. This class prints
messages whenever different constructors are invoked, which allows you to track copy and move operation
explicitly, as follows.

File probes.hpp:

#ifndef __probes_hpp__
#define probes_hpp__

#include <iostream>
// A test class with copy and move constructor and assignment
struct Movable {

float x;

Movable() : x{0}

{
std::cout << "Movable: Default-constructed" << '\n';
}
Movable(float x) : x{x}
{
std::cout << "Movable: Constructed from \"" << x << "\"\n";
}
Movable(const Movable& m) : x{m.x}
{
std::cout << "Movable: Copy-constructed" << '\n';
}
Movable (Movable&& m) noexcept : x{m.x}
{
m.x = 0;
std::cout << "Movable: Move-constructed\n";
}
Movable& operator=(const Movable& m)
{
X = m.X;
std::cout << "Movable: Copy-assigned\n";
return *this;
}
Movable& operator=(Movable&& m)
{
X = m.X;
m.x = 0;
std::cout << "Movable: Move-assigned\n";
return *this;
}

18

45

46

47

48

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

~Movable() { std::cout << "Movable: Destructed\n"; }
};
// A test class with copy constructor and assignment only
struct Copyable {

float x;

Copyable() : x{0}

{
std::cout << "Copyable: Default-constructed\n";
b
Copyable(float x) : x{x}
{
std::cout << "Copyable: Constructed from \"" << x << "\"\n";
b
Copyable(const Copyable& m) : x{m.x}
{
std::cout << "Copyable: Copy-constructed\n";
X
Copyable& operator=(const Copyable& m)
{
X = m.X;
std::cout << "Copyable: Copy-assigned\n";
return *this;
}

~Copyable() { std::cout << "Copyable: Destructed\n"; }
};

inline std::ostream& operator<<(std::ostream& os, const Movable& m)
{

return os << m.x;

}

inline std::ostream& operator<<(std::ostream& os, const Copyable& c)
{

return os << c.x;

}
#endif // __probes_hpp__

Test array_insert_movable with the following code:

#include "array.hpp"
#include "array_insert_movable.hpp"
#include "utils.hpp"
#include "probes.hpp"

std: :vector<Movable> make_test_array()

{

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

std::cout << "Constructing an array of Movable objects\n";

auto A = std::vector<Movable>{};
A.reserve(10);
A.push_back(Movable{1});
A.push_back(Movable{2}) ;
A.push_back(Movable{3}) ;

print (A, "Constructed array: ");

std::cout << "\n";
return A;
}
int main(int argc, char** argv)
{
{
auto A = make_test_array();
auto x = Movable{-1};
std::cout << "Insertinig object by copy:" << '\n';
array_insert(A, 0, x);
print (A, "Array content: ");
}
std::cout << "\n";
{
auto A = make_test_array();
auto x = Movable{-1};
std::cout << "Insertinig object by copying and moving:
array_insert_movable(A, 0, x);
print (A, "Array content: ");
}
std::cout << "\n";
{
auto A = make_test_array();
auto x = Movable{-1};
std::cout << "Insertinig object by moving:" << '\n';
array_insert_movable(A, O, std::move(x));
print (A, "Array content: ");
}
return O;
}
Constructing an array of Movable objects
Movable: Constructed from "1"
Movable: Move-constructed
Movable: Destructed
Movable: Constructed from "2"
Movable: Move-constructed
Movable: Destructed
Movable: Constructed from "3"
Movable: Move-constructed
Movable: Destructed

20

Constructed array: [1, 2, 3]

Movable: Constructed from "-1"
Insertinig object by copy:
Movable: Copy-constructed
Movable: Copy-assigned
Movable: Copy-assigned
Movable: Copy-assigned
Array content: [-1, 1, 2, 3]
Movable: Destructed
Movable: Destructed
Movable: Destructed

Movable: Destructed

Movable: Destructed

Constructing an array of Movable objects
Movable: Constructed from "1"
Movable: Move-constructed
Movable: Destructed

Movable: Constructed from "2"
Movable: Move-constructed
Movable: Destructed

Movable: Constructed from "3"
Movable: Move-constructed
Movable: Destructed
Constructed array: [1, 2, 3]

Movable: Constructed from "-1"
Insertinig object by copying and moving:
Movable: Move-constructed
Movable: Move-assigned
Movable: Move-assigned
Movable: Copy-assigned

Array content: [-1, 1, 2, 3]
Movable: Destructed

Movable: Destructed

Movable: Destructed

Movable: Destructed

Movable: Destructed

Constructing an array of Movable objects
Movable: Constructed from "1"
Movable: Move-constructed
Movable: Destructed

Movable: Constructed from "2"
Movable: Move-constructed
Movable: Destructed

Movable: Constructed from "3"
Movable: Move-constructed
Movable: Destructed
Constructed array: [1, 2, 3]

Movable: Constructed from "-1"
Insertinig object by moving:

21

20

21

22

23

24

25

26

27

Movable: Move-constructed
Movable: Move-assigned
Movable: Move-assigned
Movable: Move-assigned
Array content: [-1, 1, 2, 3]
Movable: Destructed
Movable: Destructed
Movable: Destructed
Movable: Destructed
Movable: Destructed

The code test three cases: using array_insert from the notes, using array_insert_movable without
actually moving the new element x (which causes it to be copied), and finally using array_insert_movable
to move x into the array.

If you implemented array_insert_movable, from the printout above you should notice that only the move
constructors/assignments of Movable are used in the last case.

10.2 Stack with move semantics

In the notes, the Stack class has two implementations of the push method: one version takes as input a
Ivalue reference to the value to be pushed, which internally creates a copy of the element. The other version
takes a rvalue reference, which supports moving rather than copying. Besides being potentially faster, moving
is required if you use automatic memory management using unique_ptr: by moving, you transfer ownership
of objects to and from the stack.

This is demonstrated in the following driver.

File stack_move_driver.cpp:

#include <iostream>
#include <memory>

#include <stack.hpp>

template <typename T> class StackWithMove : public Stack<T>

{
using Stack<T>::Stack;
public:
// Move a value to the top of the stack (optional)
void push(T &&x)
{
assert(this->_head < this->_storage.size());
this->_storage[this->_head++] = std::move(x);
}
I

int main(int argc, char** argv)

{
auto stack = StackWithMove<std::unique_ptr<float>>(10);
// Create a new “float™ object
auto data = std::make_unique<float>(1);

std::cout << "“data’ points to " << data.get() << std::endl;

// Push the oobject on the stack by transferring ownership to it

22

28

29

30

31

32

33

34

35

36

37

38

39

40

20

21

22

23

24

25

stack.push(std: :move(data));
std::cout << "“data’ points to " << data.get() << std::endl;

// Retrieve the object and its ownership

auto popped = std::move(stack.top());

stack.pop();

std::cout << "“popped’ points to " << popped.get() << std::endl;

// The object will be automaticallly deleted

// by exting the function as the variable ‘retrieved’, which owns
// it, falls out of scope (RAII idiom)

return O;

}

“data” points to 0x7£87d8405880
“data® points to 0x0
“popped” points to 0x7£87d8405880

Explain the output of stack_move_driver.

10.3 List iterators

In the examples so far we have “manually” iterated over a linked list by using pointers. Iterators are a concept
used by the C++ standard library to abstract operations involving such pointers.

By implementing iterators, we can iterate over the list in a much nicer way. The following test driver shows
how this can be done using iterators directly (cbeing(list)) and using a range-based for loop (x : list). It
also shows the power of template by passing the list to our own print helper function defined in utils.hpp:
the latter works because, internally, it is based on a range-based for loop that our list container now supports.

#include <iostream>

#include "list.hpp"
#include "list_iterator.hpp"
#include "utils.hpp"

int main(int argc, char** argv)

{
auto list = Node<float>{};

// Insert some numbers in the list
for (int i = 0; i < 10; ++i) {
list_insert_after(&list, static_cast<float>(i));

// Traverse the list using a const iterator

for (auto iter = cbegin(list); iter != cend(list); ++iter) {
std::cout << *iter << ' ';

}

std::cout << std::endl;
// Traverse the list using a rTange for loop

for (const auto& x : list) {
std::cout << x << ' ';

23

26

27

28

29

30

31

32

33

std::cout << std::endl;

// Traverse the list using our own “print’ helper function from

// “utils.hpp”
print(list, "List content: ");

return O;

9876543
9876543
List content: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

210
210

Write a STL-compatible iterator for the Node<T> list class.

24

	Introduction
	Linear-time sorting
	Radix sort

	Arrays
	Complexity of ArrayInsert
	Writing ArrayDelete

	Stacks
	Enhanced stack class
	Reverse Polish calculator

	Queues
	Enhanced queue class

	Lists
	Deleting elements from a list

	Binary trees
	Enhanced BinaryTree class
	Minimum and maximum element in a binary search tree
	Traversing the nodes of a BST by non-decreasing value

	Heaps
	Building a heap
	Building a heap vs sorting
	Updating the priority of a queued element

	Hashing
	Worst case complexity for multiple chaining
	Other usages of hash functions
	Division method for large keys
	Permutation invariance of the division method

	Graphs
	Shortest paths using the adjacency list representation
	Decoding shortest paths

	Further examples (optional)
	Inserting movable objects in an array
	Stack with move semantics
	List iterators

