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The Internet: 50 billion images and counting ... 5

...

It may not contain the picture you just took … 6

?

.. but it likely contains a similar one! 7 8



Goal: search a large collection for an image of the same object 10

Matching local features

Evaluating retrieval systemsIndexing using visual words

Global geometric verification
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Matching local features

Evaluating retrieval systemsIndexing using visual words

Global geometric verification

Define a similarity function between images 12

F(I1, I2) = confidence that the object is the same

I1 I2



Compare images as vectors of pixels

Image similarity (I) 13
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107 131 132 118 126 130 129 134 140

94 104 126 120 124 125 129 129 133

89 94 116 123 117 123 131 134 136

96 101 111 119 121 128 136 141 143

110 108 120 118 133 130 134 134 132

110 106 122 120 126 125 123 129 128

107 112 115 118 115 123 125 132 139

126 137 118 117 122 127 135 133 137

100 107 116 116 116 121 128 132 143

120 91 112 114 123 129 139 142 147

148 135 99 110 119 126 136 142 145

106 139 124 110 117 125 133 143 139

103 112 130 118 122 133 141 137 148

105 106 118 131 124 132 142 134 144

97 101 115 119 117 129 136 135 135

95 88 110 136 125 128 140 148 144

91 98 119 132 125 131 138 136 149

97 100 123 129 131 131 135 136 150

94 106 113 127 127 131 136 136 148

F(I1, I2) = −∥I1 − I2∥2

(194 - 107)2

(195 -94)2

(195 -115)2

I1 I2

Nuisance factors

Why do pixel values differ so much? 14

Viewpoint Visibility Illumination NoiseCamera

I1 I2

Viewpoint and visibility

Handling a variable viewpoint
As viewpoint changes pixels “move around” or even appear/disappear
We need to match corresponding pixels before we can compare them

15

I1 I2

Matching can be seen as transforming or warping an image to another

Matching and transformation 16



Matching can be seen as transforming or warping an image to another

Matching and transformation 17 18

Feature frame

19 20



21 Similarity transformations
If the camera rotates around and translates along the optical axis, the image transforms according to a similarity: 
scale, rotation, and translation.

22

[x′ 

y′ ] = sR(θ)[x
y] + [tx

ty] R(θ) = [cos θ −sin θ
sin θ cos θ ]

23 24



25 26

Homography/affine transformations
For pure camera rotation or if the object is planar, then the image transforms with an homography (approximated 
as an affine transformation).
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[x′ 

y′ ] = [a11 a12
a21 a22] [x

y] + [tx
ty]

Comparing local features using normalisation

Consider corresponding feature frames f and f′.

Then normalisation undoes the effect of a viewpoint change.

After normalisation, pixels are in correspondence (matched) and can be compared directly.

28

feature frames features normalisation normalised 
featurescrop

f

f′

f0

f0



Descriptors: SIFT

In practice, one compares descriptors rather than pixels. Descriptors:
handle residual distortions, noise, illumination;
make the representation more compact.

The most important example is the SIFT descriptor.
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Summary: descriptors

For each pair of image features
Extract and normalize the corresponding image patches
Compute their descriptor vectors
Compare descriptors using the Euclidean distance
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image features normalised 
features
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vector  
comparison

Question: how do we get the  
features in the first place?

Exhaustive matching

Exhaustive approach:
Extract all possible features (all circles or all ellipses) from both images
Test all feature pairs for possible matches

Testing all features guarantees that, if the “same feature” is visible in both images, then the corresponding patches 
are considered for matching.

31

......

Why exhaustive matching is unfeasible

The cost of exhaustive matching is O(N1 N2) where Ni is the number of features extracted from image Ii.

Even after sampling the search space, the number of all possible features Ni is very large (~106).

Exhaustive matching is just too expensive.

32

We need a method to 
select a small subset of 

features to match.



Co-variant feature detectors

A detector is a rule that selects a small subset of features for matching.

The key is co-variance: the selection mechanism must pick the “same” (i.e. corresponding) features after an 
image transformation.

Example of a co-variant detection rule: “pick all the dark blobs”.

33 Co-variant detection, invariant descriptor

A feature extracted by the Harris-Affine detector independently from different frames of a video.

Note that the feature seems “glued on” the scene.
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Co-variant detector types

Properties of a detector
repeatability
generality
speed  

Benefits of increased covariance
handle more general motions / objects 

Cons of increased covariance
less robust
slower
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similarity affine

Discriminability and support

In practice, descriptors are computed in a region surrounding the feature.

This is because the feature “visual anchors” (e.g. blobs) look the same and would be confused during matching. 

36

all blobs look 
the same

blob detector

enlarge for context
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Matching local features

Evaluating retrieval systemsIndexing using visual words

Global geometric verification

From local to global matching

Local matching
So far we have detected and then matched local 
features.

This is because normalisation is only possible if 
features are unoccluded and approximately planar.

Small features are much more likely to satisfy such 
assumptions.

On the contrary, the image as a whole is non-planar 
and contains plenty of self-occlusions. 

Global matching
However, our goal is to compare images as a whole, 
not just individual patches.

Next, we will see how to build a global similarity 
score from patch-level local comparisons.

38

Step 0: get an image pair

Matching all local features 39

number of matches: 0

Step 1: detect local features f and extract descriptors d

Matching all local features

The left image has m features (f1, d1), …,  (fm, dm)

Right image has n feature (f′1, d′1), …, (f′n, d′n)

40



Step 2: match each descriptor to its closets one

Matching all local features

Match the i-th left feature to its right nearest-neighbour nn(i), where:

41

nn(i) = argmin
j=1,…,m

∥di − d′ j∥2

Step 3: reject ambiguous matches using the 2nd-nn test

Matching all local features

Accept a match i ⟼ nn(i) only if it is at least a fraction 𝜏 = 0.9 away from other possible matches:

42

∥di − d′ nn(i)∥2 < τ argmin
j≠nn(i)

∥di − d′ j∥2

Step 4: geometric verification

Matching all local features

The final step is to test whether matches are consistent with an overall image transformation.

Inconsistent matches are rejected (see RANSAC).

43

(RANdom SAmple Consensus)

RANSAC: optimization robust to outliers

Input: M tentative feature matches (x1, x′1), …, (xM, x′M).

Output: affine transformation (A*,T*) with the largest number of inlier matches:

44

1. Repeat a large number of times:
A. Randomly sample a minimal subset of matches sufficient to estimate (A,T).
B. Find inliers, i.e. other matches that are compatible with (A,T).

2. Return (A*,T*) as the pair (A,T) with the largest number of inliers.

(A*, T*) = argmaxA,T {i : ∥x′ i − Axi − T∥ < ϵ}



By counting number of verified local feature matches

Image similarity (II) 45

# of matches after geometric verificationF(I1, I2) =

I1 I2
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Matching local features

Evaluating retrieval systemsIndexing using visual words

Global geometric verification

From image matching to image search

Our matching strategy can be used to search a handful of images exhaustively. However, this is far to slow to 
search a database of a billion or more images such as Flickr, Facebook, or the Internet.

Example:
L images in the database e.g. 106 - 1010 (Facebook)
N features per image (incl. query) e.g. 103 (~ SIFT detector)
D dimensional feature descriptor e.g. 102 (~ SIFT descriptor)
Exhaustive search cost: O(N2 L D) 1011 - 1015 ops = 100 days - 300 years
Memory footprint: O(NLD) 1TB - 1PB

Goal: develop a method to search a million or more images on a single computer in under a second (and many 
more on computer clusters).

Issues:
memory footprint
matching cost (time)
precision and recall

47

Used by Google  to search the Web instantaneously

The inverted index

Inverted index
For each word, lists all documents containing it as 
pairs 〈DocID, WordCount〉

Efficient query resolution: given a word, return the 
corresponding list

Indexing images
Image = document
Word = ?  

The key is to understand how to  
extract “words” from images

48

Inverted Files for Text Search Engines 9

Fig. 3. Complete document-level inverted file for
the Keeper database. The entry for each term t is
composed of the frequency ft and a list of pairs, each
consisting of a document identifier d and a document
frequency fd,t. Also shown are the Wd values as com-
puted for the cosine measure shown in Equation 1.

it means that a list can be read or written in a single operation. Accessing a sequence
of blocks scattered across a disk would impose significant costs on query evaluation
as the list for a typical query term on the Web data would occupy 100kB (kilobytes) to
1MB, and the inverted list for a common term could be many times this size. Adding
to the difficulties for the great majority of terms, the inverted list is much less than
a kilobyte, placing a severe constraint on feasible size for a fixed-size block. Second,
no additional space is required for next-block pointers. Third, index update procedures
must manage variable-length fragments that vary enormously in size, from tiny to vast;
our experience, however, is that the benefits of contiguity greatly outweigh these costs.

An issue that is considered in detail in Section 8 is how to represent each stored value
such as document numbers and in-document frequencies. The choice of any fixed num-
ber of bits or bytes to represent a value is clearly arbitrary and has potential implica-
tions for scaling (fixed-length values can overflow) and efficiency (inflation in the volume
of data to be managed). Using the methods described later in this article, large gains in
performance are available through the use of compressed representations of indexes.

To facilitate compression, d-gaps are stored rather than straight document identi-
fiers. For example, the sorted sequence of document numbers

7, 18, 19, 22, 23, 25, 63, . . .

can be represented by gaps

7, 11, 1, 3, 1, 2, 38, . . . .

ACM Computing Surveys, Vol. 38, No. 2, Article 6, Publication date: July 2006.

inverted index



Visual words 49

visual descriptors

descriptor d

continuous 
space

E.g. 128D  
for SIFT

visual  
dictionary

visual  
word k

visual words

discrete  
space

K elements

The visual vocabulary is obtained by forming  clusters of example descriptors . Here M may be in 
the order of a 1M, and  in the order of 104 - 105. 

The K cluster means (µ1,…,µK) are randomly initialised. Then the K-means algorithm alternates two steps:
Find for each descriptor  the index of its closest mean:

Recompute each mean µk from the descriptor assigned to it: 
 
 

Once the means are trained, new descriptors d are quantised by mapping them to the closest mean: 
 
 

K (d1, …, dM)
K

di π(di)

For learning a visual words vocabulary

The K-means algorithm 50

π(d) = argmin
k=1,…,K

∥d − μk∥2

μk = average{di : nn(di) = k}

π(di) = argmin
k=1,…,K

∥di − μk∥2

Clustering a 2D dataset

K-means example 51
Visual word examples. Each row is an 
equivalence class of patches mapped to the 
same cluster by K-means.



From local features to visual words

Two steps:
Extraction. Extract local features and compute corresponding descriptors as before.
Quantisation. Then map the descriptors to the K-means cluster centres to obtain the corresponding visual 
words.
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A simple but efficient global image descriptor

Histogram of visual words

The histogram of visual words is the vector of the 
number of occurrences of the  visual words in the 
image:

If there are  visual words then .

The vector  is a global image descriptor.

K

...h

hk = |{di : π(di) = k} |

K h ∈ ℝK
+

h

54

A simple but efficient global image descriptor

Histogram of visual words

This is also called a bag of visual words because it does not 
remember the relative positions of the features, just the 
number of occurrences. 
 
 
 
 
 
 
 
 
 
 
 
Hence,  discards spatial information.

Pros: more invariant to viewpoint changes and other 
nuisance factors.

Cons: less discriminative.

h

55

h

Cosine similarity

Comparing histograms

Histogram of visual words can be compared as vectors.

The relative distribution of visual words is more informative than their absolute number of occurrences.

This intuition is captured by the cosine similarity, which computes the angle of the L2-normalised histograms.
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1

h1

h2
F(I1, I2) = cos θ = ⟨ĥ1, ĥ2⟩

ĥ1 =
h1

∥h1∥

ĥ2 =
h2

∥h2∥

ĥ1

ĥ2

θ



By comparing bag-of-words descriptors

Image similarity (III) 57

F(I1, I2) = ⟨ĥ1, ĥ2⟩

I1 I2

Search as sparse matrix multiplication

Goal: given a query vector h, quickly compute its similarity with all the L vectors 
h1, h2, h3, ...,  hL in the database (one per indexed image).

Express this as a vector-matrix multiplication:

 
 
 
 
 
 
The naive multiplication cost is 
O(K L), where K is the number of visual words and L is the 
database size.

However, histograms are often highly sparse. If only a fraction  
ρ ≪ 1 of entries is non-zero, then the cost reduces to O(ρ K L) 
or even O(ρ2 K L).

The space required i is also only O(ρ K L).
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0 0 0 ... 0.1

0 0.1 0 ... 0

0.2 0 0 ... 0

0.1 0 0.3 ... 0.1

... ... ... ... ...

0 0 0.1 ... 0.2

... ... ... ... ...

0.01 0.1 0 ... 0

...

0 0.1 0.2 0 ... 0 ... 0.1 ⨉

h h2 h3 hLh1

Summary: image indexing and retrieval

Given a query image I, we search the database by combining the two similarities:

1. The fast but unreliable cosine similarity to obtain a short list of M ≅ 100 possible 
matches.

2. The slow but reliable geometric verification to rerank the top M matches.

59

cosine  
similarity

all images top M top 1
geometric 
verification

number of matches: 127

query I
http://www.robots.ox.ac.uk/~vgg/demo/

Demo 60
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Matching local features

Evaluating retrieval systemsIndexing using visual words

Global geometric verification

Evaluating of a retrieval system

We now have a system that can match a given 
picture to a large database of images (e.g. 
Wikipedia).

Besides speed, a good retrieval system must 
have two fundamental properties:

1. Precision, i.e. the ability to return only images 
that match the query.

2. Recall, i.e. the ability to return all the images 
that match the query.

62

Assess the quality of a ranked result list

Precision-recall curves

Consider all images up to rank r in the list:
Precision @r: fraction of correct results in the top 
r.
Recall @r: fraction of relevant database images 
that are contained in the top r.

The Average-Precision (AP) is (roughly) the area 
under the PR curve.

AP is a single number summarising the overall quality 
of the result list.
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decreasing score

Evaluating an image retrieval system

A benchmark usually has 1) a large image database and 2) a number of test queries for which the correct 
answer (relevant/irrelevant images) is known.

The retrieval system is evaluated in term of mean average precision (mAP), which is the mean AP of the test 
queries.
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✔ ✗✗ 35%

query retrieval results AP

✔ ✗✗ 100%

✔ ✗ ✔ 75%

53%mean average precision (mAP)

...... ... ... ...



http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/

Example benchmark: Oxford 5K

Dataset content
~ 5K images of Oxford
An optional additional set of confounder (irrelevant) images
58 test queries

65

Query Retrieved Images

✔✗✔ ...
C18 Machine Vision and Robotics 
Computer Vision
Lecture 2: Convolutional neural networks
 
Dr Andrea Vedaldi  
4 lectures, Hilary Term

For lecture notes, tutorial sheets, and updates see
http://www.robots.ox.ac.uk/~vedaldi/teach.html

Linear predictors

We would like to build a predictor 
that can tell if an image  contains a 
certain object (say a “bicycle”).

We learn this function from example 
images that do and do not contain the 
object.

In the simplest case, the function is a 
linear predictor :

Images are interpreted as (high-
dimensional) vectors.

 dots  and a parameter 
vector  to obtain the score for 
the positive hypothesis (bicycle).
The sign of  is used as 
prediction.

x

F(x)

F(x) x
w

F(x)

67

w

bicycle?

F(x) = ⟨w, x⟩

linear predictor

x

Linear predictors beyond vector inputs

Data representations

Beyond vector data
 A linear predictor applies to vector data.

 However, we want to process images, text, videos, or 
sounds that are not necessarily vectors.

 For this, we use a representation function , which 
maps data to vectors.

Non-linear classification
 Representations are used even if the data  is already 
a vector.

 They result in a non-linear classifier function which can 
be significantly more expressive than a linear one.

Φ

x

68

representation 

A vector

Φ(x) ∈ ℝdx

possibly not a vector

F(x) = ⟨w, Φ(x)⟩

non-linear predictor

F(x) = ⟨w, x⟩

linear predictor



Meaningful representations

A representation should help 
the linear classifier to perform 
discrimination.

The goal is to map the 
semantic similarity between 
data points to a corresponding 
vector similarity.

A good representation is:
invariant to nuisance 
factors
sensitive to semantic 
factors
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embedding space ℝd

near
far

congruous 
pair

incongruous 
pair

Semantic similarity Vector similarity 
(distance)

representation

x

y

z

Φ(x)

Φ(y)

Φ(z)
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The perceptron

EvaluationLearning via SGD

Convolutional networks

71

The perceptron

EvaluationLearning via SGD

Convolutional networks

An early neural network by Rosenblatt (1957)

The perceptron

What
The perceptron maps an input vector 

 to a probability value .

For example,  could be the probability 
that  is an image of a “bicycle” rather 
than not.

How
The perceptron computes this 
probability by weighing the vector 
components, summing them, and then 
applying a non-linear sigmoid 
activation function.

x y

y
x

72

∑⋮

b
w1

wD

w2

1
x1

x2

xD

S

f(x; w; b)x

w, b

weighing summation sigmoid  
activation

input

parameters

prediction

y = P(c = 1 |x, w)

y = P(c = 1 |x, w)



Makes the perceptron non-linear

The sigmoid activation function

The activation function in the perceptron is 
a sigmoid

The sigmoid converts real scores  in the 
range  into probability values in 
the range .

It has several remarkable properties, such 
as the following identity for its derivative

S(z) =
1

1 + e−z

z
(−∞, ∞)

(0, 1)

dS
dz

= S(z)(1 − S(z)) = S(z)S(−z)
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Sigmoid function

S(
z)

0

0.25

0.5

0.75

1

z
-6 -4.5 -3 -1.5 0 1.5 3 4.5 6

Perceptron = linear classifier + sigmoid

The perceptron as a parametric function

The perceptron is a function 
parametrized by a weight vector  and a bias .

 The function:
1. Maps a vector  to a scalar score using the 

linear function .
2. Transforms the score into a probability 

value by applying the sigmoid function 
.

There usually is a constant bias term  added to 
the score. This can be implemented by extending 
the input vector with a constant element equal to 
1 and including  in .

f(x; w; b)
w b

x
⟨x, w⟩ + b

S(z)

b

b w
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∑

b1

S y

f(x; w, b) = S (⟨w, x⟩ + b)
=

1
1 + exp(−w1x1 − … − wDxD − b)

bias

⋮

w1

wD

w2

x1

x2

xD

Training the perceptron: least square

Regard the perceptron as a parametric function from 
an input space X to an output space Y:

The parameters  of the perceptron are learned 
empirically by fitting the function to example data 

.

This can be done by solving a least-square problem:

 
 
This problem is non-linear due to the activation 
function . It needs to be solved by an iterative 
method such as gradient descent.

(w, b)

(x1, y1), (x2, y2), …(xN, yN),

S
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X Y

data labelsperceptron

x

E(w, b) =
1
N

N

∑
i=1

(S(⟨w, xi⟩ + b) − yi)2

y = S (⟨w, x⟩ + b)

Better than least square for classification problems

Cross-entropy loss

Given the probabilistic nature of the perceptron 
output, usually the fitting criterion is not least square, 
but maximum log-likelihood.

The log-likelihood is computed as follows:
The posterior probability of the 0/1 label  can 
be expressed as 
 

 

The negative log-likelihood of the parameters is 
 

The empirical negative log-likelihood is obtained by 
averaging the negative log-likelihood over all the 
training data points

Just like the squared objective of least square, this 
objective function can be minimised by using an 
iterative method such as gradient descent.

yi

P(yi |xi; w) = f(xi; w)yi(1 − f(xi; w))1−yi

−log P(yi |xi; w)
= − yi log f(xi; w) − (1 − yi)log(1 − f(xi; w))

E(w) = −
1
N

N

∑
i=1

yi log f(xi; w) + (1 − yi)log(1 − f(xi; w))

76



Softmax layer

Multi-class perceptron

Multiple perceptrons can be 
combined to predict more 
than two classes.

Each perceptron computes 
the score   for a class 
hypothesis .

The vector of scores  is 
mapped to a vector of 
probabilities  using the 
softmax operator, which is 
a generalisation of the 
sigmoid.

x2
c
c = 1,…, C

x2

x3

77

∑

⋮

b1
1

w1
1D

w1
12

1

x1
1

x1
2

x1
D

1

∑

b1
2

w1
2D

w1
22

1

x2
1

x2
2

soft 
max

w1
21 Shown for 2-classes, 

useful for 3 or more

 = x3
1 P(y = 1 |x; w, b)

 = x3
2 P(y = 2 |x; w, b)

x3
i =

ex2
i

ex2
1 + ex2

2

w1
11

In the binary case, the softmax is the same as the sigmoid

Softmax = sigmoid for 2 classes 78

∑

1

×
1
2

-1

x12

soft 
max

z

x3
1 =

ex3
1

ex3
1 + ex3

2
=

e
z
2

e z
2 + e− z

2
=

1
1 + e−z

= S(⟨w, x⟩ + b)

⋮

b
w1

wD

w2

x1

x2

xD

 = x3
1 P(y = 1 |x, w, b)

 = x3
2 P(y = 2 |x, w, b)

The log-likelihood and objective function for a multi class perceptron are given by:

This loss function is sometimes called cross-entropy. It measures the discrepancy between 
the empirical posterior distributions and
the predicted posterior distributions .

−log P(y = yi |xi, W) = − log
ew⊤

yix+byi

∑C
q=1 ew⊤

q x+bq
= − w⊤

yi
x − byi

+ log
C

∑
q=1

ew⊤
q x+bq

E(W) =
1
N

N

∑
i=1

−w⊤
yi
xi − byi

+ log
C

∑
q=1

ew⊤
q xi+bq

Q(c |xi) = δ(c − yi)
P(c |xi) = P(y = c |xi, W)

Learning from example data

Multi-class perceptron 79

Deep architectures

Multi-layer perceptron (MLP)

Perceptrons can also be chained, resoling in a so-called deep neural network. Depth refers to the fact that the 
function decomposes as a long (“deep”) chain of simpler perception-like functions.
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∑ S

∑ S

∑ S

w2
11

w2
12

x3
1

input

neuron 1 (1 of layer 1)

neuron 2 (2 of layer 1)

neuron 3 (1 of layer 2)

⋮

b1
1

w1
1D

w1
12

1

x1
1

x1
2

x1
D

b1
2

w1
2D

w1
22

x2
1

x2
2

w1
21

w1
11
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Hubel and Wiesel 1959

The discovery of oriented cells in the visual cortex

In 1959, Hubel & Wiesel 
conducted seminal experiments 
on the visual cortex of mammals 
(Nobel Prize in Physiology and 
Medicine in 1981).

They discovered the existence of 
neurons that respond to specific 
orientations and locations in the 
retina.

These neurons form a local and 
(statistically) translation invariant 
image operator.

82

oriented 
filter

83 Tensors

Variables in CNNs are usually tensors, i.e. multi-
dimensional array.

Conventionally, the dimensions are  
 where

 is the batch size, i.e. the number of data 
samples represented by the tensor.

 is the number of channels.
 are the spatial dimensions.

The number of spatial dimensions  can vary. E.g.:
 is used to represent 2D data such as 

images.
 is used to represent 3D data such as 

volumes.

In general, it is possible to assign any meaning to the 
dimensions (e.g. time), as required by the application.

N × C × U1 × … × UD
N

C
U1 × … × UD

D
D = 2

D = 3

84

height  
(or )

H
U1

width  
(or )

W
U2

channels C

samples N



Example: images as tensors

 A color image can be interpreted as a tensor with  (colour) 
channels, one for each of the R, G, and B colour components.

 More in general, any  tensor can be interpreted as a 
 field of C-dimensional feature vectors.

 The meaning of the feature channels is often not obvious.

C = 3

C × H × W
H × W

85

channels 
C = 3

height  
(or )

H
U1

width  
(or )

W
U2

Tensor indexing

Tensor elements  are identified via indexes, one for 
each dimension:

 is the sample index in the batch
 is the feature channel index
 is the spatial index

The spatial index u is in fact a multi-index, a shorthand 
notation for .

Indexes are 0-based:

Generally,  whenever you see a spatial multi-index, just 
pretend there is only one spatial dimension ( ). The 
extension to  is almost always trivial.

xncu

n
c
u

u = (u1, …, uD)

0 ≤ n < N
0 ≤ c < C
0 ≤ u < U = (U1, …, UD)

D = 1
D > 1
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u1

u2

c

n

xncu

A simple filtering operation

Linear convolution

A linear filter  computes the weighted summation 
of a window of the input tensor .

Key properties:
Linearity: the operation is linear in the input 
and the filter parameters.
Locality: the operator looks at a small window 
of data.
Translation invariance: all windows are 
processed using the same filter weights.

f
x

87

∑

x y

f

Multiple input channels

Linear convolution 88

∑

f

A linear filter  computes the weighted summation 
of a window of the input tensor .

Key properties:
Linearity: the operation is linear in the input 
and the filter parameters.
Locality: the operator looks at a small window 
of data.
Translation invariance: all windows are 
processed using the same filter weights.

The filter has one channel for each input tensor 
channel.

f
x

x y



Multiple output channels and filter banks

Linear convolution 89

∑

A linear filter  computes the weighted summation 
of a window of the input tensor .

Key properties:
Linearity: the operation is linear in the input 
and the filter parameters.
Locality: the operator looks at a small window 
of data.
Translation invariance: all windows are 
processed using the same filter weights.

The filter has one channel for each input tensor 
channel.

A bank of filters is used to generated multiple 
output channels, one per filter.

f
x

∑

f2

x y

f1

As a neural network operator

Linear convolution

A convolutional layer is an operator that takes an input a 
tensor  a filter bank  and a bias vector  and produces as 
output a new tensor .

Dimensions:
The batch size N is the same for input and output.
Input and filters have the same number of channels .
The number of output channels  is the same as the 
number of filters in the bank.
The output dimension  is given by 
 

Recall that , , and  as 
we are using the multi-index shorthand.

x f b
y

C
K

O

O = I − F + 1

O = (O1, O2) F = (F1, F2) I = (I1, I2)

90

ynkv = bk +
C−1

∑
c=0

F−1

∑
u=0

fkcu ⋅ xn,c,v+u

f, b

x y*

N × C × I K × C × F N × K × O

input output

Padding and downsampling

Linear convolution

Padding extends a tensor  with a border  filled with 
zeros.

Downsampling retain one every  pixels in a tensor, 
where  is called the stride. 
 

Padding and downsampling can be interpreted as additional layers before and after standard convolution:

x P

S
S

91

P

padding  
P

f, b

*
down-

sampling 
S

x
y

P, S

f, b

*
x y

The non-linearity in deep networks

Activation functions

Activation functions are scalar non-linear functions S(z) 
that are applied element-wise to an input tensor x to 
generate an output tensor y (with the same dimensions).

92

S

yncu = S(xncu)

x y

N × C × I N × C × I

input output

-1.1

-0.325

0.45

1.225

2

-3 -1.5 0 1.5 3

Sigmoid Tanh ReLU
Leaky ReLU Soft ReLU

z = max{0, z}, rectified linear unit (ReLU),
z = log(1 + ez), soft ReLU,
z = ϵz + (1 − ϵ) max{0, z}, leaky ReLU,
z = (1 + e−z)−1, sigmoid,
z = tanh(z), hyperbolic tangent,



Parameter-less non-linear filters

Pooling 93

The max pooling operator is similar to linear filter, 
operating transitively on  sized windows.

The operator extracts the maximum response for 
each channel and window

Pooling can use other operators, for example 
average

F = (F1, F2)

yncv = max
0≤u<F

xn,c,v+u

yncv =
1

F1 ⋅ F2 ∑
0≤u<F

xn,c,v+u
x y

max

max

CNN layers summary 94

ynkv = bk +
C−1

∑
c=0

F−1

∑
u=0

fkcu ⋅ xn,c,v+u

f, b

x y*
N × C × I

K × C × F

N × K × O

input output

ReLUx y yncu = max{0, xncu}

max
F

x y yncv = max
0≤u<F

xnc,v+u

filters O = I − F + 1

O = I − F + 1

K = C, O = I

expression dimensions

A long sequence of layers

Deep convolutional neural networks

A deep convolutional neural 
network is a chain of several 
layers.

The typical pattern is to alternate 
linear convolution and non-linear 
activation, usually ReLU.

The other typical pattern is to 
gradually reduce the spatial 
resolution (via downsampling) and 
increase the number of feature 
channels.

Max-pooling is often used, in 
combination with downsampling, to 
reduce resolution further.

95

x

Σ

Σ

y

S

S

Σ S …

Σ

Σ

S

S

Σ S …

downsampling

more channels

AlexNet: a CNN for image classification

AlexNet contains 8 blocks, each formed by:
A linear convolution operator (with padding/downsampling)
A ReLU operator (except for f8)
An optional max pooling operator (with padding/downsamplin

96

c1 c2 c3 c4 c5 f6 f7 f8
vector of  

scores
C

P, S

fi, bi

xi−1 y* ReLU max
F,P,S xi

3 ⨉ 244 ⨉ 244

F filter size 11 5 3 3 3 6 1 1
K filters number 96 256 384 384 256 4096 4096 4096

F’ pooling size 3 3 - - 3 - - -
S’ pooling stride 2 2 - - 2 - - -

P filter padding 0 2 1 1 1 0 0 0

64
⨉ 27

 ⨉ 27

25
6⨉

 27
 ⨉ 27

38
4⨉

 13
 ⨉ 13

38
4 ⨉

 13
 ⨉ 13

25
6⨉

 6 
⨉ 6

40
96

 ⨉ 1 
⨉ 1

40
96

 ⨉ 1 
⨉ 1

1000 ⨉ 1 ⨉ 1

S filter stride 4 1 1 1 1 1 1 1

P’ pooling padding 1 0 - - 0 - - -



The output is a 1000 ⨉ 1 ⨉ 1 tensor.

Each entry represents the score for 
the hypothesis that the image contains 
one out of a 1000 possible classes 
(defined in ImageNet).

Class scores are converted into 
probabilities by using the softmax 
layer (multi-class generalization of the 
sigmoid)

AlexNet: a CNN for image classification 97

c1 c2 c3 c4 c5 f6 f7 f8
vector of  

scores
C

3 ⨉ 244 ⨉ 244
64

⨉ 27
 ⨉ 27

25
6⨉

 27
 ⨉ 27

38
4⨉

 13
 ⨉ 13

38
4 ⨉

 13
 ⨉ 13

25
6⨉

 6 
⨉ 6

40
96

 ⨉ 1 
⨉ 1

40
96

 ⨉ 1 
⨉ 1

1000 ⨉ 1 ⨉ 1

yc =
exc

∑C−1
k=0 exk

class scores

Softmaxx y

class probabilities
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Learning a CNN

Given a dataset  the total 
error is obtained by averaging the cross-entropy loss. 
 
 
The goal is to optimize this energy over the model 
parameters .

(x1, y1), (x2, y2), …(xN, yN)

w
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c1 c2 c3 c4 c5 c6 f7 f8 loss

bike

Ei(w)

w1 w2 w3 w4 w5 w6 w7 w8

xi

yiclass

image error

E(w) =
1
N

N

∑
i=1

Ei(w), Ei(w) = ℓ(yi, Φ(xi))

w* = argmin
w

E(w)

parameters w

ImageNet benchmark data

Learning a CNN

A CNN classifiers has millions of parameters. 
Hence, learning requires massive amounts 
of data.

ImageNet is a large collection of labelled 
image.

The standard subset (ILSVRC12) contains
1,000 object classes
~1,000 example images for each class
1.2M training images in total

Without ImageNet (or a similar dataset) it 
would have been impossible to develop 
modern deep neural networks for computer 
vision.

100



ImageNet benchmark data

Learning a CNN 101 Stochastic gradient descent

The objective function is an average over N = 1.2M 
data points, and so is the gradient. The cost of a single 
gradient descent update is way too large to be 
practical.

Stochastic gradient
Approximate the gradient by sampling a single data 
point (or a small batch of size N’ << N). Perform the 
gradient update using the approximation.

Momentum
SGD can be accelerated by denoising the gradient 
estimate using a moving average. This average is 
called momentum.

102

E(w) =
1
N

N

∑
i=1

Ei(w) ⇒ ∇E(w) =
1
N

N

∑
i=1

∇Ei(w)

wt+1 = wt − ηt ∇Ei(wt), i ∼ U({1,2,…, N})
uniform distribution

mt+1 = 0.9 mt + ηt ∇Ei(wt), wt+1 = wt − mt+1

Further details and practical notes

Learning a CNN

Epochs & mini-batches
In practice, the data is visited not randomly, but in 
random order (without repetitions). A full pass is 
called an epoch.

Gradients are estimated by averaging mini-batches 
of 10-1000 examples. This takes advantage of 
parallel hardware such as GPUs.

Annealing schedule
The learning rate   is gradually reduced over time, 
usually by a factor 10 when no progress is observed.

This allows SGD to slow down and more accurately 
land on an optimum as the latter is approached. 

Time required
On a fast GPU, it is possible to process ~1k images 
per second for AlexNet.

An epoch thus lasts for 20 minutes. 40-100 epochs 
are required, requiring 13-33 hours (faster training 
requires tricks such as batch normalization).

On a CPU, this could be 100 x slower (four months).

Some networks are much slower (10 - 50 x).
ηt

103 104
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Evaluating deep networks

General approach
Evaluation is similar to any other machine learning 
method, such as SVMs or the perceptron.

Evaluation must always be done on a held-out 
validation or test set. This is because we need to 
test generalization, not just model fitting.

 
 
Most benchmarks provide validation data for this 
purpose. 
 
Evaluation can use the same loss used for training. 
However, it is not uncommon to evaluate with respect 
to other, more meaningful losses err as well. 

Top-k error
For classification problems, there are two popular 
losses.

Classification error: the percentage of incorrectly 
classified images in the validation set.

Top-k error: the percentage of images whose ground 
truth class is not contained in the top-k more likely 
classes according to the model.

The top-k error requires the network to estimate 
confidences. Top-1 is the same as the classification 
error.
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E(Φ) =
1

|𝒟validation | ∑
(x,y)∈𝒟validation

err(Φ(x), y)

C18 Machine Vision and Robotics 
Computer Vision
Lecture 3: Backpropagation and automatic differentiation
 
Dr Andrea Vedaldi  
4 lectures, Hilary Term

For lecture notes, tutorial sheets, and updates see
http://www.robots.ox.ac.uk/~vedaldi/teach.html

The need for gradients

In order to train a neural network we minimise the 
average prediction error

In order to do so, we require the gradients of the 
error with respect to all parameters

argmin
w1,…,w8

E(w1, …, w8)

107

∇E = ( dE
dw1

, ⋯,
dE
dw8 )

c1 c2 c3 c4 c5 c6 f7 f8 loss

bike

Ei(w)

w1 w2 w3 w4 w5 w6 w7 w8

class yi

image xi error

parameters w

An efficient algorithm to compute the gradients

Backpropagation 108

ℝx
forward

backward

dE
dw1

dE
dw2

dE
dw3

dE
dw4

dE
dw5

dE
dw6

dE
dw7

dE
dw8

c1 c2 c3 c4 c5 c6 f7 f8 loss

bike

Ei(w)

w1 w2 w3 w4 w5 w6 w7 w8

class yi

image xi



Chain rule: scalar version 109

f1 f2 fn−1 fn
xnx1

⋯
x0 xn−1

Chain rule (scalar version)

A composition of  functions

The derivative is obtained by using the chain rule

n

xn = ( fn ∘ fn−1 ∘ ⋯ ∘ f2 ∘ f1) (x0)

dxn

dx0
=

dfn
dxn−1

×
dfn−1

dxn−2
× ⋯ × df2

dx1
× df1

dx0

110

f1f2fn−1fn
xn x1

⋯
x0xn−1

The  operator rearranges the elements of a tensor 
as a column vector, unrolling the tensor dimensions.

The order of unrolling is not essential, but a consistent 
convention must be used. PyTorch uses the row major 
convention:

 
 
 
 
 
 
 
By reshaping tensors in this manner, 
a tensor layer y = f(x) can be thought of as  
a vector layer vec y = f(vec x).

vec

Reshaping tensors into vectors

The  operatorvec 111

tensors

f

vec f

vectors

vec
vec [y00 y01

y10 y11] =

y00
y01
y10
y11

vec y vec x

y x

Derivative of tensor-valued functions

We use the  operator to reduce a tensor 
derivative to a Jacobian matrix:

1.  converts the tensor function  to 
a vector function .

2. The derivative of a vector function is its 
Jacobian matrix.

3. The Jacobian matrix contains the derivative of 
each element of the output vector  with 
respect to each element of the input vector 

.

vec

vec y = f(x)
vec y = (vec f )(vec x)

vec y

vec x

112

vec f

Jacobian  
matrix

d vec f
d vec x

vectorised  
tensor 

function
vec xvec y

vec x⊤

vec y



Using  and matrix notationvec

Chain rule (tensor version) 113

f1f2fn−1fn
xn x1

⋯
x0xn−1

⋯
d vec fn

d vec xn−1

d vec fn−1

d vec xn−2

d vec f1
d vec x0

d vec f2
d vec x1

d vec xn

d vec x0

The (unbearable) size of tensor derivatives 114

32 ⨉ 32 ⨉ 512

32 ⨉ 32 ⨉ 512

275 B elements

1 TB of memory 
required !!

The size of these Jacobian matrices is huge. Example:

vec f

d vec f
d vec x

vec xvec y

vec y

vec x⊤ x

y

Unless the output is a scalar 115

f

Now the Jacobian reduces to a gradient and has the same size as . Example:x

1 ⨉ 1 ⨉ 1

32 ⨉ 32 ⨉ 512

Just 2MB of 
memory

524K elements

Scalar
This is always the case  

if the last layer 
is the loss function

d vec f
d vec x

vec x

vec x⊤

y

x

y

Assume that  is a scalarxn

Backpropagation 116

f1f1fn−1fn ⋯

too largesmall

compute this first !

⋯
d vec fn

d vec xn−1

d vec fn−1

d vec xn−2

d vec f1
d vec x0

d vec f2
d vec x1

pn−1

xn x1 x0xn−1

× × × ×
⏟



Assume that  is a scalarxn

Backpropagation 117

too largesmall

pn−2

d vec( fn−1 ∘ fn)
d vec xn−2

⋯
d vec f1
d vec x0

d vec f2
d vec x1

× × ×

f1f1fn−1fn ⋯
xn x1 x0xn−1

Assume that  is a scalarxn

Backpropagation 118

too largesmall

p1

d vec f1
d vec x0

d vec fn ∘ ⋯ ∘ f2
d vec x1

f1f1fn−1fn ⋯
xn x1 x0xn−1

×

Assume that  is a scalarxn

Backpropagation 119

small

d vec fn ∘ ⋯ ∘ f1
d vec x0

p0

f1f1fn−1fn ⋯
xn x1 x0xn−1

Vector-Jacobian product fBP

The key step  is the calculation of the  
vector-Jacobian product

 
 
The result  is a vector that has the same size 
as , so not too large.

The Jacobian matrix is still too large to explicitly 
compute.

The key idea is to use layer-specific 
optimisation to compute  without computing 
the Jacobian matrix explicitly.

p′ = fBP(p; x) = p ⋅
d vec f
d vec x

p′ 

x

fBP

120

fg
z y

p

d vec g
d vec y

d vec f
d vec x

x
rest of network

= p′ 

p′ = p ⋅
d vec f
d vec x

fBP
p

x

×



Sigmoid layer

An example of fBP

Assume that  is a vector (otherwise use ).

Let  be the sigmoid activation layer:

 

 
The Jacobian is then given by:

 

Most derivatives are equal to zero:

The Jacobian is the diagonal matrix

is then given by

 
 

x vec

y = f(x)

f(x) =

σ(x1)
σ(x2)

⋮
σ(xC)

, σ(x) =
ex

ex + e−x
.

df
dx

=

dσ(x1)
dx1

dσ(x1)
dx2

… dσ(x1)
dxC

dσ(x2)
dx1

dσ(x2)
dx2

… dσ(x2)
dxC

⋮ ⋮ ⋱ ⋮
dσ(xC)

dx1

dσ(xC)
dx2

…
dσ(xC)

dxC

.

dσ(xc)
dxk

= {
·σ(xc), c = k,
0, c ≠ k .

, ·σ(x) =
dσ
dx

(x) .

df
dx

=

·σ(x1) 0 … 0
0 ·σ(x2) … 0
⋮ ⋮ ⋱ ⋮
0 0 … ·σ(xC)

.

fBP

fBP(p; x) = p ⋅
df
dx

= [p1
·σ(x1) p2

·σ(x2) ⋯ pC
·σ(xC)] .

121  as a reversed layerfBP

The function  is a forward layer .

The function defines a backward layer operating in 
the reverse direction .

This generates a new mirror block diagram; the forward 
diagram feeds into the backward diagram via .

f y = f(x)

fBP

p′ = fBP(p; x)

x

122

fBP

f

forward

backward

x

x

p

y = f(x)

p′ = p ⋅
d vec f
d vec x

 computes gradientsfBP

So what are these vectors  anyways?

Each  is the gradient of the network output  with 
respect to the corresponding variable :

Thus  computes a gradient out of another gradient:

 

p

p z
x

p′ =
dz
dx

or even just p′ = dx

fBP

p =
dz
dy

⇒ p′ = fBP(p; x) =
dz
dx

123

fg
z y x

rest of the network

fBPgBP

dz
dy

dz
dz

= 1 dz
dx

p p′ 

Keeping track of calculations for automatic differentiation

Compute graphs

The compute graph is a 
mechanism to keep track of the 
calculations in a program.

It can be used to automatically 
deduce which computations are 
required to compute the 
gradients.

These computations can then be 
added to the graph and the 
process repeated to obtain 
higher-order derivatives.
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f1f2fn−1fn
xn x1

⋯
x0xn−1

fBP
1fBP

2fBP
n−1fBP

n

dxn dx1
⋯

dx0dxn−1



Keeping track of calculations for automatic differentiation

Compute graphs

The compute graph is a 
mechanism to keep track of the 
calculations in a program.

It can be used to automatically 
deduce which computations are 
required to compute the 
gradients.

These computations can then be 
added to the graph and the 
process repeated to obtain 
higher-order derivatives.

The graph is more commonly 
shown the other way around, with 
the forward direction left to right.
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f1 f2 fn−1 fn
xnx1

⋯
x0 xn−1

fBP
1 fBP

2 fBP
n−1 fBP

n

dxndx1
⋯

dx0 dxn−1

forward

backward

Conv, ReLU, MP and their transposed blocks

Backpropagation network 126

conv ReLU MP
x0 x3

convBP ReLUBP MPBP

dx1dx0 dx2

forward

backward

x1 x2

dx3
⋯

⋯

⋯

Sometimes much less information is needed

Sufficient statistics and bottlenecks 127

on/off  
mask

nothing!* pooling  
switches

conv ReLU MP
x0 x3

convBP ReLUBP MPBP

dx1dx0 dx2

forward

backward

x1 x2

dx3
⋯

⋯

⋯

* Unless the gradients w.r.t. the filter parameters are also needed

A PyTorch example

Automatic differentiation (AutoDiff)

Modern machine learning toolboxes provide AutoDiff.

This means that calculations can be performed as 
normal in a programming language.

Underneath, the toolbox builds a compute graph.

Eventually, gradients can be requested.

128

x1

x2

x4

x3

w

sum()
plus()

conv()

x0

ReLU()

import torch 

# Define two random inputs, both requiring grads 
x0 = torch.randn(1,3,20,20, requires_grad=True) 
x1 = torch.randn(1,10,18,18, requires_grad=True) 

# Get a convolutional layer. It contains 
# a parameter tensor conv.weight with requires_grad=True 
conv = torch.nn.Conv2d(3,10,3) 

# Intermediate calculations 
x2 = conv(x0) 
x3 = torch.nn.ReLU()(x2) + x1 
x4 = x3.sum() # Scalar! 

# Invoke AutoGrad to compute the gradients 
x4.backward() 

# Print the gradient shapes 
print(x0.grad.shape) 
print(x1.grad.shape) 
print(conv.weight.grad.shape) 

dx4

dx3

dx0

dx1

dw

dx2

implicit!



C18 Machine Vision and Robotics 
Computer Vision
Lecture 4: Applications
 
Dr Andrea Vedaldi  
4 lectures, Hilary Term

For lecture notes, tutorial sheets, and updates see
http://www.robots.ox.ac.uk/~vedaldi/teach.html

Label individual pixels

Semantic image segmentation 130

sofa

personcat

Detection, verification, recognition, emotion, 3D fitting

Face analysis

E.g. VGG-Face

131

same different

Detection, word recognition, character recognition

Text spotting

E.g. SynthText and VGG-Text

http://zeus.robots.ox.ac.uk/textsearch/#/search/

132

CREAM



Extract individual object instances

Object detection 133

boat : 0.853 person :0.993

person :0.981
person :0.972

person :0.907

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation 
R. Girshick, J. Donahue, T. Darrell, J. Malik, CVPR 2014
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Architectures

TrackingDetection

Segmentation

135

Architectures

TrackingDetection

Segmentation

Evolution

Neural network architectures 136

AlexNet (2012)

5 convolutional layers

3 fully-connected layers



Evolution

Neural network architectures 137

16 conv layers

AlexNet (2012) VGG-M (2013) VGG-VD-16 (2014)

Evolution

Neural network architectures 138

AlexNet (2012) VGG-M (2013) VGG-VD-16 (2014) GoogLeNet (2014)

Evolution

Neural network architectures 139

AlexNet (2012) VGG-M (2013) VGG-VD-16 (2014) GoogLeNet (2014)

Evolution

Neural network architectures 140

AlexNet (2012)

VGG-M (2013)

VGG-VD-16 (2014)

GoogLeNet (2014)

ResNet 152 (2015)

ResNet 50 (2015)

152 convolutional layers

50 convolutional layers

16 convolutional layers Krizhevsky, I. Sutskever, and G. E. Hinton. 
ImageNet classification with deep convolutional 

neural networks. In Proc. NIPS, 2012. 

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. 
Reed, D. Anguelov, D. Erhan, V. Vanhoucke, 

and A. Rabinovich. Going deeper with 
convolutions. In Proc. CVPR, 2015. 

K. Simonyan and A. Zisserman. Very deep 
convolutional networks for large-scale image 

recognition. In Proc. ICLR, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep 
residual learning for image recognition. In Proc. 

CVPR, 2016.



3 ⨉ more accurate in 3 years

Accuracy 141
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5 ⨉ slower

Speed 142
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 Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers

 Reason: far fewer feature channels (quadratic speed/space gain)

 Moral: optimize your architecture

Num. of parameters is about the same

Model size

 Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers

 Reason: far fewer feature channels (quadratic speed/space gain)

 Moral: optimize your architecture
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Label individual pixels

Semantic image segmentation 145

c1 c2 c3 c4 c5 f6 f7 f8

input = image output = image
convolutional fully-connected

The part of the image looked at by a neuron

Receptive field

Receptive Field (RF) of a neuron
The subset of the image affecting the value of a neuron

Small vs large RFs 
Small RF: spatially specific, but can only account for small 
visual structures
Large RF: spatially a-specific, but can account for large visual 
structure

How to make the RF large
Use large filters
Chain several filters
Interleave downsampling along the chain  
E.g. downsampling 2x increases the RF size 2x.

146

neuron  
receptive field

neuron 
value

image

Comparing the receptive fields

Convolutional vs fully connected layers 147

Neurons are spatially selective, can 
be used to localize things.

Neurons are global, do not 
characterize well position.

Which one is 
more useful for 

pixel level labelling?

Convolutional layers Fully connected layers

The filter support fills the entire input tensor

A fully connected layer is just a large filter 148

F(k)

K

w(k)

1 ⨉ 1 ⨉ K

✱
=



Fully-convolutional neural networks 149

class predictions

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional models for semantic segmentation. In Proc. CVPR, 2015

Fully-convolutional neural networks

Dense evaluation
Apply the whole network convolutional
Computes a vector of class probabilities at each 
pixel  

Downsampling
For efficiency, the input data is substantially down 
sampled in the network
The output is fairly low resolution (e.g. 1/32 of 
original)

150
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The object detection problem

The goal of object detection is to simultaneously classify, enumerate, and localise known object types in an 
image.

A key challenge is that the number of object instances is not known a priori.

152

boat : 0.853 person :0.993

person :0.981
person :0.972

person :0.907



Region-based Convolutional Neural Network (R-CNN)

Detections with CNNs

CNNs compute a fixed number of image features. A new computational mechanism is needed in order to detect a 
variable number of objects.

Region-based CNN (R-CNN) use a region proposal algorithm to extract a large number of potential object 
regions, and then a CNN to assess each one of them.

153

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation  
R. Girshick, J. Donahue, T. Darrell, J. Malik, CVPR 2014

CNN chair

background

potted plant

CNN

CNN

Obtain a shortlist of regions that may contain objects

Region proposal algorithm

A region proposal algorithm produces a shortlist of regions that are likely to contain whole objects.

The Selective Search method by [van de Sande, Uijlings et al.]):
Uses hierarchical segmentation based on colour uniformity and image edges.
Produces about ~ 2000 regions / image with a > 95% probability of hitting any relevant object in the image.
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Dilate, crop, reshape

From proposals to CNN features

A region proposal is slightly dilated to capture some visual context and then cropped and resized in order to be 
passed to a CNN.
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Dilate Crop & scale
Anisotropic
227 x 227

Propose

Evaluate CNN

From proposals to CNN features

The cropped and resize region is passed through a CNN to extract a corresponding feature vector (or image 
representation).
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Dilate Scale
Anisotropic
227 x 227

c5c1 c2 c3 c4 f6 f7

CNN features
Up to FC-7  

AlexNet

Feature vector
4096 D



Run an SVM or similar on top

Classification of a region

The feature vector is then classified by means of a linear predictor (or a multi-layer perceptron). There are C + 1 
possible object types, including “no object” (background).
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Scale
Anisotropic
227 x 227

c5c1 c2 c3 c4 f6 f7

CNN features
Up to FC-7  

AlexNet

Feature vector
4096 D

Label
One out of N

aeroplane

cat

dog

horse

person

…

CNN

Bounding-box regression

Region adjustment

A second linear regression is used to refine the bounding box location. In the example, the person’s legs were 
not included in the proposal, but regression can fix this mistake.
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Scale
Anisotropic
227 x 227

c5c1 c2 c3 c4 f6 f7

CNN features
Up to FC-7  

AlexNet

Feature vector
4096 D

Box adjustment
dx1, dx2, dy1, dy2

Ridge  
regress.

Based on overlap with ground truth bounding box

Positive and negative training regions 159

a positive  
training region  

 
overlap > 70%

a negative  
training region  

 
overlap < 30%

Ren, He, Girshick, &  Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NeurIPS 2015

the ground-truth  
region

At the time of introduction (2013)

R-CNN results on PASCAL VOC

Despite its conceptual simplicity, at the time of introduction R-CNN was substantially better than all existing 
methods.

This is due to the power of the CNN classifier.

Importantly, the CNN is pre-trained on the ImageNet data (1M images) for classification (using only image-level 
labels), then fine-tuned on PASCAL VOC data (5K images) for object detection (using region-level labels).

160

VOC 2007 VOC 2010
DPM v5 (Girshick et al. 2011) 33.7% 29.6%

UVA sel. search (Uijlings et al. 2013) 35.1%
Regionlets (Wang et al. 2013) 41.7% 39.7%
SegDPM (Fidler et al. 2013) 40.4%

R-CNN (TorontoNet) 54.2% 50.2%
R-CNN (TorontoNet) + bbox regression 58.5% 53.7%

R-CNN (VGG-VD) 62.1%
R-CNN (ONet) + bbox regression 66.0% 62.9%



Integrate more of the blocks as CNN components

R-CNNs as a complex CNN

R-CNN can be improved substantially in three ways:
By integrating all blocks in a end-to-end trainable CNN
By accelerating region-specific computations
By replacing region proposal generation with something better

161

CNN  
regressor

classimage CNN  
classifier

CNN  
features

Region  
proposals

box

Accelerating R-CNN

Problem: The fundamental bottleneck is 
evaluating the CNN from scratch for each 
image region.

Solution: compute all the convolutional 
features just once, and then crop directly the 
resulting feature map.

Only the fully-connected layers are evaluated 
for each region.

How: spatial pooling layer.
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c5c1 c2 c3 c4 f6 f7

c5c1 c2 c3 c4 f6 f7

c5c1 c2 c3 c4 f6 f7

crop

c5c1 c2 c3 c4

f6 f7

f6 f7

f6 f7

crop

The Spatial Pooling (SP) layer

The spatial pooling layer (SP) max-pools the convolutional feature responses in a given region.

This can be used to extract many region-specific feature vectors by reusing the same convolutional features.

163

He, Zhang,Ren & Sun, “Spatial Pyramid Pooling (SPP)  in Deep Convolutional Networks for Visual Recognition”, ECCV 2014

any given region

c5c1 c2 c3 c4

feature  
vector

maxpooling

As a building block

The Spatial Pooling (SP) layer

The SP layer extracts a feature 
vector for each of the R regions.

The output are thus R tensor of size 
1 ⨉ 1 ⨉ C.

Alternatively, this can be seen as a 
single 1 ⨉ 1 ⨉ C ⨉ R tensor.

164

SPfeature  
map

list of 
R regions

 R region-specific 
feature vectors

He, Zhang,Ren & Sun, “Spatial Pyramid Pooling (SPP)  in Deep Convolutional Networks for Visual Recognition”, ECCV 2014



SP with multiple subdivisions

The Spatial Pyramid Pooling Layer

SPP is similar to SP, but pools features in the tiles of a grid-like subdivision of the region.

The resulting feature vector captures the spatial layout of the original region.

165

max pooling

Summary

Fast R-CNN 166

c5c1 c2 c3 c4

f6 f7 chair

selective  
search

SPP
r6 r7 box refinement

f6 f7 background

r6 r7 box refinement

f6 f7 potted plant

r6 r7 box refinement
Ross Girshick. “Fast R-CNN”. ICCV 2015

same  
parameters

Both faster and better!

Fast and Faster R-CNN performance

Detection mAP on PASCAL VOC 2007, with VGG-16 pre-trained on ImageNet.

167

Method Time / image mAP (%)

R-CNN ~50s 66.0

Fast R-CNN ~2s 66.9

Faster R-CNN 198ms 69.9

Example detections 168

bus: 0.980

car : 1.000

dog : 0.989

person : 0.992

person : 0.974

horse : 0.993

boat : 0.853 person : 0.993

person : 0.981

person : 0.972

person : 0.907

cat : 0.928

dog : 0.983

person : 0.753



Detection challenge (comp4: train on own data)

PASCAL VOC Leaderboards 169
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http://tinyurl.com/h7uzkov

2014 20164 ⨉ improvement in accuracy
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Draw a bounding box first, then track it automatically

Tracking 1/2: select & track 171

Track pre-programmed objects (e.g. faces) fully automatically (no manual selection required)

Tracking 2/2: detect & track 172



Example of specific trackers 173

bus cat bunny

monkey plane bike

fox car tiger

Tracking flavours 174

Select & track  
Open ended, but requires manual input

Detect & track  
Restricted to the object the program knows, but 
fully automatic

Typical applications: people, faces, cars

New objects can be learned, 
but at a cost

Track pretty much anything

Cheap to track something new, but still 
requires manual input

Open-ended tracking

Select & track

Problem: Track an arbitrary object with the sole input of a single bounding box in the first frame of the video  
 
Challenge: The tracker must be object-agnostic and learn what we mean from a single example

175

Learn the object in one frame, seek it in the next

Tracking via iterated detecktion

Repeat at times t = 0, 1, 2, 3, …
At frame t learn a model of the object vs background
At frame t + 1 use the model to find the new object location

176

End-to-end representation learning for 
Correlation Filter based tracking, Jack 
Valmadre, Luca Bertinetto, João F. Henriques, 
Andrea Vedaldi, Philip H.S. Torr, CVPR, 2017.

+-



Describe and match

How our tracker works

Descriptor computation 
 
A neural network φ maps each  
image window to a visual descriptor

Two images of different sizes
small: exemplar at time t
big: search area at time t + 1

Descriptor matching 
 
Computes the descriptor similarity at all 
translated sub-windows

177

Cross-correlation  
layertime t

time t + 1

image 
windows descriptors matching 

result
neural 

net

ImageNet Video

Training data

Official task is object detection  from video - can be easily adapted to arbitrary object tracking

Almost 4,500 videos and 1,200,000 bounding boxes!

30 classes: mostly animals (~75%) and some vehicles (~25%)
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Recap

C18 Computer Vision

Prof. Andrea Vedaldi (4 lectures)
Lecture 1: Matching, indexing, and retrieval
Lecture 2: Convolutional neural networks
Lecture 3: Backpropagation and automated differentiation
Lecture 4: Applications

Prof. Victor Prisacariu (4 lectures)
3D vision
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