
C18 Machine Vision and Robotics 
Computer Vision
Introduction

 
Dr Andrea Vedaldi  
4 lectures, Hilary Term

For lecture notes, tutorial sheets, and updates see

http://www.robots.ox.ac.uk/~vedaldi/teach.html

Overview

C18 Computer Vision

Prof. Andrea Vedaldi (4 lectures)

Lecture 1: Matching, indexing, and retrieval

Lecture 2: Convolutional neural networks

Lecture 3: Backpropagation and automated
differentiation

Lecture 4: Applications

Prof. Victor Prisacariu (4 lectures)

3D vision

Feedback form

2

Notes, handout and tutorial sheet

C18 materials

Look for materials in WebLearn or at 
 
http://www.robots.ox.ac.uk/~vedaldi/teach.html

3

C18 Machine Vision and Robotics 
Computer Vision
Lecture 1: Matching, indexing, and retrieval

 
Dr Andrea Vedaldi  
4 lectures, Hilary Term

For lecture notes, tutorial sheets, and updates see

http://www.robots.ox.ac.uk/~vedaldi/teach.html

The Internet: 50 billion images and counting ... 5

...

It may not contain the picture you just took … 6

?

.. but it likely contains a similar one! 7 8

Goal: search a large collection for an image of the same object 10

Matching local features

Evaluating retrieval systemsIndexing using visual words

Global geometric verification

11

Matching local features

Evaluating retrieval systemsIndexing using visual words

Global geometric verification

Define a similarity function between images 12

F(I1, I2) = confidence that the object is the same

I1 I2

Compare images as vectors of pixels

Image similarity (I) 13

194 194 194 194 195 195 195 195 195

195 195 195 196 196 196 196 196 195

196 196 196 196 197 197 197 197 195

195 196 196 196 196 196 197 197 195

194 194 195 195 195 195 195 196 196

194 194 194 194 195 195 195 195 196

195 195 195 195 195 196 196 196 196

196 196 196 196 197 197 197 197 196

194 195 195 196 196 196 196 196 196

194 195 195 196 196 196 196 196 196

194 195 195 196 196 196 196 196 196

194 195 195 196 196 196 196 196 196

194 195 195 196 196 196 196 196 196

194 195 195 196 196 196 196 196 196

194 195 195 196 196 196 196 196 196

194 195 195 196 196 196 196 196 196

196 196 196 196 196 196 196 196 196

196 196 196 196 196 196 196 196 196

196 196 196 196 196 196 196 196 196

107 131 132 118 126 130 129 134 140

94 104 126 120 124 125 129 129 133

89 94 116 123 117 123 131 134 136

96 101 111 119 121 128 136 141 143

110 108 120 118 133 130 134 134 132

110 106 122 120 126 125 123 129 128

107 112 115 118 115 123 125 132 139

126 137 118 117 122 127 135 133 137

100 107 116 116 116 121 128 132 143

120 91 112 114 123 129 139 142 147

148 135 99 110 119 126 136 142 145

106 139 124 110 117 125 133 143 139

103 112 130 118 122 133 141 137 148

105 106 118 131 124 132 142 134 144

97 101 115 119 117 129 136 135 135

95 88 110 136 125 128 140 148 144

91 98 119 132 125 131 138 136 149

97 100 123 129 131 131 135 136 150

94 106 113 127 127 131 136 136 148

F(I1, I2) = −∥I1 − I2∥2

(194 - 107)2

(195 -94)2

(195 -115)2

I1 I2

Nuisance factors

Why do pixel values differ so much? 14

Viewpoint Visibility Illumination NoiseCamera

I1 I2

Viewpoint and visibility

Handling a variable viewpoint

As viewpoint changes pixels “move around” or even appear/disappear

We need to match corresponding pixels before we can compare them

15

I1 I2

Matching can be seen as transforming or warping an image to another

Matching and transformation 16

Matching can be seen as transforming or warping an image to another

Matching and transformation 17 18

Feature frame

19 20

21 Similarity transformations
If the camera rotates around and translates along the optical axis, the image transforms according to a similarity:
scale, rotation, and translation.

22

[x′￼

y′￼] = sR(θ)[x
y] + [tx

ty] R(θ) = [cos θ −sin θ
sin θ cos θ]

23 24

25 26

Homography/affine transformations
For pure camera rotation or if the object is planar, then the image transforms with an homography (approximated
as an affine transformation).

27

[x′￼

y′￼] = [a11 a12
a21 a22] [x

y] + [tx
ty]

Comparing local features using normalisation

Consider corresponding feature frames f and f′.

Then normalisation undoes the effect of a viewpoint change.

After normalisation, pixels are in correspondence (matched) and can be compared directly.

28

feature frames features normalisation normalised 
featurescrop

f

f′

f0

f0

Descriptors: SIFT

In practice, one compares descriptors rather than pixels. Descriptors:

handle residual distortions, noise, illumination;

make the representation more compact.

The most important example is the SIFT descriptor.

29

20 40 60 80 100 120
0

20

40

60

80

100

120

140

20 40 60 80 100 120
0

20

40

60

80

100

120

140

normalised features spatial histogram of gradients SIFT descriptor

d

d0

Summary: descriptors

For each pair of image features

Extract and normalize the corresponding image patches

Compute their descriptor vectors

Compare descriptors using the Euclidean distance

30

image features normalised 
features

20 40 60 80 100 120
0

20

40

60

80

100

120

140

20 40 60 80 100 120
0

20

40

60

80

100

120

140

descriptors

d1

d2

－ ‖ d1 － d2 ‖2

vector  
comparison

Question: how do we get the
features in the first place?

Exhaustive matching

Exhaustive approach:

Extract all possible features (all circles or all ellipses) from both images

Test all feature pairs for possible matches

Testing all features guarantees that, if the “same feature” is visible in both images, then the corresponding patches
are considered for matching.

31

......

Why exhaustive matching is unfeasible

The cost of exhaustive matching is O(N1 N2) where Ni is the number of features extracted from image Ii.

Even after sampling the search space, the number of all possible features Ni is very large (~106).

Exhaustive matching is just too expensive.

32

We need a method to
select a small subset of

features to match.

Co-variant feature detectors

A detector is a rule that selects a small subset of features for matching.

The key is co-variance: the selection mechanism must pick the “same” (i.e. corresponding) features after an
image transformation.

Example of a co-variant detection rule: “pick all the dark blobs”.

33 Co-variant detection, invariant descriptor

A feature extracted by the Harris-Affine detector independently from different frames of a video.

Note that the feature seems “glued on” the scene.

34

Co-variant detector types

Properties of a detector

repeatability

generality

speed  

Benefits of increased covariance

handle more general motions / objects 

Cons of increased covariance

less robust

slower

35

similarity affine

Discriminability and support

In practice, descriptors are computed in a region surrounding the feature.

This is because the feature “visual anchors” (e.g. blobs) look the same and would be confused during matching.

36

all blobs look

the same

blob detector

enlarge for context

37

Matching local features

Evaluating retrieval systemsIndexing using visual words

Global geometric verification

From local to global matching

Local matching

So far we have detected and then matched local
features.

This is because normalisation is only possible if
features are unoccluded and approximately planar.

Small features are much more likely to satisfy such
assumptions.

On the contrary, the image as a whole is non-planar
and contains plenty of self-occlusions. 

Global matching

However, our goal is to compare images as a whole,
not just individual patches.

Next, we will see how to build a global similarity
score from patch-level local comparisons.

38

Step 0: get an image pair

Matching all local features 39

number of matches: 0

Step 1: detect local features f and extract descriptors d

Matching all local features

The left image has m features	 (f1, d1), …,	 (fm, dm)

Right image has n feature	 (f′1, d′1), …, (f′n, d′n)

40

Step 2: match each descriptor to its closets one

Matching all local features

Match the i-th left feature to its right nearest-neighbour nn(i), where:

41

nn(i) = argmin
j=1,…,m

∥di − d′￼j∥2

Step 3: reject ambiguous matches using the 2nd-nn test

Matching all local features

Accept a match i ⟼ nn(i) only if it is at least a fraction 𝜏 = 0.9 away from other possible matches:

42

∥di − d′￼nn(i)∥2 < τ argmin
j≠nn(i)

∥di − d′￼j∥2

Step 4: geometric verification

Matching all local features

The final step is to test whether matches are consistent with an overall image transformation.

Inconsistent matches are rejected (see RANSAC).

43

(RANdom SAmple Consensus)

RANSAC: optimization robust to outliers

Input: M tentative feature matches (x1, x′1), …, (xM, x′M).

Output: affine transformation (A*,T*) with the largest number of inlier matches:

44

1. Repeat a large number of times:

A. Randomly sample a minimal subset of matches sufficient to estimate (A,T).

B. Find inliers, i.e. other matches that are compatible with (A,T).

2. Return (A*,T*) as the pair (A,T) with the largest number of inliers.

(A*, T*) = argmaxA,T {i : ∥x′￼i − Axi − T∥ < ϵ}

By counting number of verified local feature matches

Image similarity (II) 45

of matches after geometric verificationF(I1, I2) =

I1 I2

46

Matching local features

Evaluating retrieval systemsIndexing using visual words

Global geometric verification

From image matching to image search

Our matching strategy can be used to search a handful of images exhaustively. However, this is far to slow to
search a database of a billion or more images such as Flickr, Facebook, or the Internet.

Example:

L images in the database 		 e.g. 106 - 1010 (Facebook)

N features per image (incl. query)		 e.g. 103 (~ SIFT detector)

D dimensional feature descriptor		 e.g. 102 (~ SIFT descriptor)

Exhaustive search cost: O(N2 L D)		 1011 - 1015 ops = 100 days - 300 years

Memory footprint: O(NLD)				 1TB - 1PB

Goal: develop a method to search a million or more images on a single computer in under a second (and many
more on computer clusters).

Issues:

memory footprint

matching cost (time)

precision and recall

47

Used by Google to search the Web instantaneously

The inverted index

Inverted index

For each word, lists all documents containing it as
pairs 〈DocID, WordCount〉

Efficient query resolution: given a word, return the
corresponding list

Indexing images

Image = document

Word = ?  

The key is to understand how to  
extract “words” from images

48

Inverted Files for Text Search Engines 9

Fig. 3. Complete document-level inverted file for
the Keeper database. The entry for each term t is
composed of the frequency ft and a list of pairs, each
consisting of a document identifier d and a document
frequency fd,t. Also shown are the Wd values as com-
puted for the cosine measure shown in Equation 1.

it means that a list can be read or written in a single operation. Accessing a sequence
of blocks scattered across a disk would impose significant costs on query evaluation
as the list for a typical query term on the Web data would occupy 100kB (kilobytes) to
1MB, and the inverted list for a common term could be many times this size. Adding
to the difficulties for the great majority of terms, the inverted list is much less than
a kilobyte, placing a severe constraint on feasible size for a fixed-size block. Second,
no additional space is required for next-block pointers. Third, index update procedures
must manage variable-length fragments that vary enormously in size, from tiny to vast;
our experience, however, is that the benefits of contiguity greatly outweigh these costs.

An issue that is considered in detail in Section 8 is how to represent each stored value
such as document numbers and in-document frequencies. The choice of any fixed num-
ber of bits or bytes to represent a value is clearly arbitrary and has potential implica-
tions for scaling (fixed-length values can overflow) and efficiency (inflation in the volume
of data to be managed). Using the methods described later in this article, large gains in
performance are available through the use of compressed representations of indexes.

To facilitate compression, d-gaps are stored rather than straight document identi-
fiers. For example, the sorted sequence of document numbers

7, 18, 19, 22, 23, 25, 63, . . .

can be represented by gaps

7, 11, 1, 3, 1, 2, 38,

ACM Computing Surveys, Vol. 38, No. 2, Article 6, Publication date: July 2006.

inverted index

Visual words 49

visual descriptors

descriptor d

continuous 
space

E.g. 128D  
for SIFT

visual  
dictionary

visual  
word k

visual words

discrete  
space

K elements

The visual vocabulary is obtained by forming clusters of example descriptors . Here M may be in
the order of a 1M, and in the order of 104 - 105. 

The K cluster means (µ1,…,µK) are randomly initialised. Then the K-means algorithm alternates two steps:

Find for each descriptor the index of its closest mean:

Recompute each mean µk from the descriptor assigned to it: 
 
 

Once the means are trained, new descriptors d are quantised by mapping them to the closest mean: 
 
 

K (d1, …, dM)
K

di π(di)

For learning a visual words vocabulary

The K-means algorithm 50

π(d) = argmin
k=1,…,K

∥d − μk∥2

μk = average{di : nn(di) = k}

π(di) = argmin
k=1,…,K

∥di − μk∥2

Clustering a 2D dataset

K-means example 51
Visual word examples. Each row is an
equivalence class of patches mapped to the
same cluster by K-means.

From local features to visual words

Two steps:

Extraction. Extract local features and compute corresponding descriptors as before.

Quantisation. Then map the descriptors to the K-means cluster centres to obtain the corresponding visual
words.

53

A simple but efficient global image descriptor

Histogram of visual words

The histogram of visual words is the vector of the
number of occurrences of the visual words in the
image:

If there are visual words then .

The vector is a global image descriptor.

K

...h

hk = |{di : π(di) = k} |

K h ∈ ℝK
+

h

54

A simple but efficient global image descriptor

Histogram of visual words

This is also called a bag of visual words because it does not
remember the relative positions of the features, just the
number of occurrences. 
 
 
 
 
 
 
 
 
 
 
 
Hence, discards spatial information.

Pros: more invariant to viewpoint changes and other
nuisance factors.

Cons: less discriminative.

h

55

h

Cosine similarity

Comparing histograms

Histogram of visual words can be compared as vectors.

The relative distribution of visual words is more informative than their absolute number of occurrences.

This intuition is captured by the cosine similarity, which computes the angle of the L2-normalised histograms.

56

1

h1

h2
F(I1, I2) = cos θ = ⟨ĥ1, ĥ2⟩

ĥ1 =
h1

∥h1∥

ĥ2 =
h2

∥h2∥

ĥ1

ĥ2

θ

By comparing bag-of-words descriptors

Image similarity (III) 57

F(I1, I2) = ⟨ĥ1, ĥ2⟩

I1 I2

Search as sparse matrix multiplication

Goal: given a query vector h, quickly compute its similarity with all the L vectors 
h1, h2, h3, ..., hL in the database (one per indexed image).

Express this as a vector-matrix multiplication:

 
 
 
 
 
 
The naive multiplication cost is 
O(K L), where K is the number of visual words and L is the
database size.

However, histograms are often highly sparse. If only a fraction  
ρ ≪ 1 of entries is non-zero, then the cost reduces to O(ρ K L)
or even O(ρ2 K L).

The space required i is also only O(ρ K L).

58

0 0 0 ... 0.1

0 0.1 0 ... 0

0.2 0 0 ... 0

0.1 0 0.3 ... 0.1

...

0 0 0.1 ... 0.2

...

0.01 0.1 0 ... 0

...

0 0.1 0.2 0 ... 0 ... 0.1 ⨉

h h2 h3 hLh1

Summary: image indexing and retrieval

Given a query image I, we search the database by combining the two similarities:

1. The fast but unreliable cosine similarity to obtain a short list of M ≅ 100 possible
matches.

2. The slow but reliable geometric verification to rerank the top M matches.

59

cosine  
similarity

all images top M top 1
geometric 
verification

number of matches: 127

query I
http://www.robots.ox.ac.uk/~vgg/demo/

Demo 60

61

Matching local features

Evaluating retrieval systemsIndexing using visual words

Global geometric verification

Evaluating of a retrieval system

We now have a system that can match a given
picture to a large database of images (e.g.
Wikipedia).

Besides speed, a good retrieval system must
have two fundamental properties:

1. Precision, i.e. the ability to return only images
that match the query.

2. Recall, i.e. the ability to return all the images
that match the query.

62

Assess the quality of a ranked result list

Precision-recall curves

Consider all images up to rank r in the list:

Precision @r: fraction of correct results in the top
r.

Recall @r: fraction of relevant database images
that are contained in the top r.

The Average-Precision (AP) is (roughly) the area
under the PR curve.

AP is a single number summarising the overall quality
of the result list.

63

25%

66%
60%

50%

42%

recall

pr
ec

is
io

n

100%

12%

75%

37% 100%

precision-recall

decreasing score

Evaluating an image retrieval system

A benchmark usually has 1) a large image database and 2) a number of test queries for which the correct
answer (relevant/irrelevant images) is known.

The retrieval system is evaluated in term of mean average precision (mAP), which is the mean AP of the test
queries.

64

✔ ✗✗ 35%

query retrieval results AP

✔ ✗✗ 100%

✔ ✗ ✔ 75%

53%mean average precision (mAP)

......

http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/

Example benchmark: Oxford 5K

Dataset content

~ 5K images of Oxford

An optional additional set of confounder (irrelevant) images

58 test queries

65

Query Retrieved Images

✔✗✔ ...
C18 Machine Vision and Robotics 
Computer Vision
Lecture 2: Convolutional neural networks

 
Dr Andrea Vedaldi  
4 lectures, Hilary Term

For lecture notes, tutorial sheets, and updates see

http://www.robots.ox.ac.uk/~vedaldi/teach.html

Linear predictors

We would like to build a predictor
that can tell if an image contains a
certain object (say a “bicycle”).

We learn this function from example
images that do and do not contain the
object.

In the simplest case, the function is a
linear predictor :

Images are interpreted as (high-
dimensional) vectors.

 dots and a parameter
vector to obtain the score for
the positive hypothesis (bicycle).

The sign of is used as
prediction.

x

F(x)

F(x) x
w

F(x)

67

w

bicycle?

F(x) = ⟨w, x⟩

linear predictor

x

Linear predictors beyond vector inputs

Data representations

Beyond vector data

 A linear predictor applies to vector data.

 However, we want to process images, text, videos, or
sounds that are not necessarily vectors.

 For this, we use a representation function , which
maps data to vectors.

Non-linear classification

 Representations are used even if the data is already
a vector.

 They result in a non-linear classifier function which can
be significantly more expressive than a linear one.

Φ

x

68

representation

A vector

Φ(x) ∈ ℝdx

possibly not a vector

F(x) = ⟨w, Φ(x)⟩

non-linear predictor

F(x) = ⟨w, x⟩

linear predictor

Meaningful representations

A representation should help
the linear classifier to perform
discrimination.

The goal is to map the
semantic similarity between
data points to a corresponding
vector similarity.

A good representation is:

invariant to nuisance
factors

sensitive to semantic
factors

69

embedding space ℝd

near
far

congruous
pair

incongruous
pair

Semantic similarity Vector similarity 
(distance)

representation

x

y

z

Φ(x)

Φ(y)

Φ(z)

70

The perceptron

EvaluationLearning via SGD

Convolutional networks

71

The perceptron

EvaluationLearning via SGD

Convolutional networks

An early neural network by Rosenblatt (1957)

The perceptron

What

The perceptron maps an input vector

 to a probability value .

For example, could be the probability
that is an image of a “bicycle” rather
than not.

How

The perceptron computes this
probability by weighing the vector
components, summing them, and then
applying a non-linear sigmoid
activation function.

x y

y
x

72

∑⋮

b
w1

wD

w2

1
x1

x2

xD

S

f(x; w; b)x

w, b

weighing summation sigmoid  
activation

input

parameters

prediction

y = P(c = 1 |x, w)

y = P(c = 1 |x, w)

Makes the perceptron non-linear

The sigmoid activation function

The activation function in the perceptron is
a sigmoid

The sigmoid converts real scores in the
range into probability values in
the range .

It has several remarkable properties, such
as the following identity for its derivative

S(z) =
1

1 + e−z

z
(−∞, ∞)

(0, 1)

dS
dz

= S(z)(1 − S(z)) = S(z)S(−z)

73

Sigmoid function

S(
z)

0

0.25

0.5

0.75

1

z
-6 -4.5 -3 -1.5 0 1.5 3 4.5 6

Perceptron = linear classifier + sigmoid

The perceptron as a parametric function

The perceptron is a function
parametrized by a weight vector and a bias .

 The function:

1. Maps a vector to a scalar score using the

linear function .

2. Transforms the score into a probability

value by applying the sigmoid function
.

There usually is a constant bias term added to
the score. This can be implemented by extending
the input vector with a constant element equal to
1 and including in .

f(x; w; b)
w b

x
⟨x, w⟩ + b

S(z)

b

b w

74

∑

b1

S y

f(x; w, b) = S (⟨w, x⟩ + b)
=

1
1 + exp(−w1x1 − … − wDxD − b)

bias

⋮

w1

wD

w2

x1

x2

xD

Training the perceptron: least square

Regard the perceptron as a parametric function from
an input space X to an output space Y:

The parameters of the perceptron are learned
empirically by fitting the function to example data

.

This can be done by solving a least-square problem:

 
 
This problem is non-linear due to the activation
function . It needs to be solved by an iterative
method such as gradient descent.

(w, b)

(x1, y1), (x2, y2), …(xN, yN),

S

75

X Y

data labelsperceptron

x

E(w, b) =
1
N

N

∑
i=1

(S(⟨w, xi⟩ + b) − yi)2

y = S (⟨w, x⟩ + b)

Better than least square for classification problems

Cross-entropy loss

Given the probabilistic nature of the perceptron
output, usually the fitting criterion is not least square,
but maximum log-likelihood.

The log-likelihood is computed as follows:

The posterior probability of the 0/1 label can
be expressed as 
 

 

The negative log-likelihood of the parameters is 
 

The empirical negative log-likelihood is obtained by
averaging the negative log-likelihood over all the
training data points

Just like the squared objective of least square, this
objective function can be minimised by using an
iterative method such as gradient descent.

yi

P(yi |xi; w) = f(xi; w)yi(1 − f(xi; w))1−yi

−log P(yi |xi; w)
= − yi log f(xi; w) − (1 − yi)log(1 − f(xi; w))

E(w) = −
1
N

N

∑
i=1

yi log f(xi; w) + (1 − yi)log(1 − f(xi; w))

76

Softmax layer

Multi-class perceptron

Multiple perceptrons can be
combined to predict more
than two classes.

Each perceptron computes
the score for a class
hypothesis .

The vector of scores is
mapped to a vector of
probabilities using the
softmax operator, which is
a generalisation of the
sigmoid.

x2
c
c = 1,…, C

x2

x3

77

∑

⋮

b1
1

w1
1D

w1
12

1

x1
1

x1
2

x1
D

1

∑

b1
2

w1
2D

w1
22

1

x2
1

x2
2

soft 
max

w1
21 Shown for 2-classes, 

useful for 3 or more

 = x3
1 P(y = 1 |x; w, b)

 = x3
2 P(y = 2 |x; w, b)

x3
i =

ex2
i

ex2
1 + ex2

2

w1
11

In the binary case, the softmax is the same as the sigmoid

Softmax = sigmoid for 2 classes 78

∑

1

×
1
2

-1

x12

soft 
max

z

x3
1 =

ex3
1

ex3
1 + ex3

2
=

e
z
2

e z
2 + e− z

2
=

1
1 + e−z

= S(⟨w, x⟩ + b)

⋮

b
w1

wD

w2

x1

x2

xD

 = x3
1 P(y = 1 |x, w, b)

 = x3
2 P(y = 2 |x, w, b)

The log-likelihood and objective function for a multi class perceptron are given by:

This loss function is sometimes called cross-entropy. It measures the discrepancy between

the empirical posterior distributions and

the predicted posterior distributions .

−log P(y = yi |xi, W) = − log
ew⊤

yix+byi

∑C
q=1 ew⊤

q x+bq
= − w⊤

yi
x − byi

+ log
C

∑
q=1

ew⊤
q x+bq

E(W) =
1
N

N

∑
i=1

−w⊤
yi
xi − byi

+ log
C

∑
q=1

ew⊤
q xi+bq

Q(c |xi) = δ(c − yi)
P(c |xi) = P(y = c |xi, W)

Learning from example data

Multi-class perceptron 79

Deep architectures

Multi-layer perceptron (MLP)

Perceptrons can also be chained, resoling in a so-called deep neural network. Depth refers to the fact that the
function decomposes as a long (“deep”) chain of simpler perception-like functions.

80

∑ S

∑ S

∑ S

w2
11

w2
12

x3
1

input

neuron 1 (1 of layer 1)

neuron 2 (2 of layer 1)

neuron 3 (1 of layer 2)

⋮

b1
1

w1
1D

w1
12

1

x1
1

x1
2

x1
D

b1
2

w1
2D

w1
22

x2
1

x2
2

w1
21

w1
11

81

The perceptron

EvaluationLearning via SGD

Convolutional networks

Hubel and Wiesel 1959

The discovery of oriented cells in the visual cortex

In 1959, Hubel & Wiesel
conducted seminal experiments
on the visual cortex of mammals
(Nobel Prize in Physiology and
Medicine in 1981).

They discovered the existence of
neurons that respond to specific
orientations and locations in the
retina.

These neurons form a local and
(statistically) translation invariant
image operator.

82

oriented 
filter

83 Tensors

Variables in CNNs are usually tensors, i.e. multi-
dimensional array.

Conventionally, the dimensions are  
 where

 is the batch size, i.e. the number of data
samples represented by the tensor.

 is the number of channels.

 are the spatial dimensions.

The number of spatial dimensions can vary. E.g.:

 is used to represent 2D data such as

images.

 is used to represent 3D data such as

volumes.

In general, it is possible to assign any meaning to the
dimensions (e.g. time), as required by the application.

N × C × U1 × … × UD
N

C
U1 × … × UD

D
D = 2

D = 3

84

height  
(or)

H
U1

width  
(or)

W
U2

channels C

samples N

Example: images as tensors

 A color image can be interpreted as a tensor with (colour)
channels, one for each of the R, G, and B colour components.

 More in general, any tensor can be interpreted as a
 field of C-dimensional feature vectors.

 The meaning of the feature channels is often not obvious.

C = 3

C × H × W
H × W

85

channels
C = 3

height  
(or)

H
U1

width  
(or)

W
U2

Tensor indexing

Tensor elements are identified via indexes, one for
each dimension:

 is the sample index in the batch

 is the feature channel index

 is the spatial index

The spatial index u is in fact a multi-index, a shorthand
notation for .

Indexes are 0-based:

Generally, whenever you see a spatial multi-index, just
pretend there is only one spatial dimension (). The
extension to is almost always trivial.

xncu

n
c
u

u = (u1, …, uD)

0 ≤ n < N
0 ≤ c < C
0 ≤ u < U = (U1, …, UD)

D = 1
D > 1

86

u1

u2

c

n

xncu

A simple filtering operation

Linear convolution

A linear filter computes the weighted summation
of a window of the input tensor .

Key properties:

Linearity: the operation is linear in the input
and the filter parameters.

Locality: the operator looks at a small window
of data.

Translation invariance: all windows are
processed using the same filter weights.

f
x

87

∑

x y

f

Multiple input channels

Linear convolution 88

∑

f

A linear filter computes the weighted summation
of a window of the input tensor .

Key properties:

Linearity: the operation is linear in the input
and the filter parameters.

Locality: the operator looks at a small window
of data.

Translation invariance: all windows are
processed using the same filter weights.

The filter has one channel for each input tensor
channel.

f
x

x y

Multiple output channels and filter banks

Linear convolution 89

∑

A linear filter computes the weighted summation
of a window of the input tensor .

Key properties:

Linearity: the operation is linear in the input
and the filter parameters.

Locality: the operator looks at a small window
of data.

Translation invariance: all windows are
processed using the same filter weights.

The filter has one channel for each input tensor
channel.

A bank of filters is used to generated multiple
output channels, one per filter.

f
x

∑

f2

x y

f1

As a neural network operator

Linear convolution

A convolutional layer is an operator that takes an input a
tensor a filter bank and a bias vector and produces as
output a new tensor .

Dimensions:

The batch size N is the same for input and output.

Input and filters have the same number of channels .

The number of output channels is the same as the
number of filters in the bank.

The output dimension is given by 
 

Recall that , , and as
we are using the multi-index shorthand.

x f b
y

C
K

O

O = I − F + 1

O = (O1, O2) F = (F1, F2) I = (I1, I2)

90

ynkv = bk +
C−1

∑
c=0

F−1

∑
u=0

fkcu ⋅ xn,c,v+u

f, b

x y*

N × C × I K × C × F N × K × O

input output

Padding and downsampling

Linear convolution

Padding extends a tensor with a border filled with
zeros.

Downsampling retain one every pixels in a tensor,
where is called the stride. 
 

Padding and downsampling can be interpreted as additional layers before and after standard convolution:

x P

S
S

91

P

padding  
P

f, b

*
down-

sampling
S

x
y

P, S

f, b

*
x y

The non-linearity in deep networks

Activation functions

Activation functions are scalar non-linear functions S(z)
that are applied element-wise to an input tensor x to
generate an output tensor y (with the same dimensions).

92

S

yncu = S(xncu)

x y

N × C × I N × C × I

input output

-1.1

-0.325

0.45

1.225

2

-3 -1.5 0 1.5 3

Sigmoid Tanh ReLU
Leaky ReLU Soft ReLU

z = max{0, z}, rectified linear unit (ReLU),
z = log(1 + ez), soft ReLU,
z = ϵz + (1 − ϵ) max{0, z}, leaky ReLU,
z = (1 + e−z)−1, sigmoid,
z = tanh(z), hyperbolic tangent,

Parameter-less non-linear filters

Pooling 93

The max pooling operator is similar to linear filter,
operating transitively on sized windows.

The operator extracts the maximum response for
each channel and window

Pooling can use other operators, for example
average

F = (F1, F2)

yncv = max
0≤u<F

xn,c,v+u

yncv =
1

F1 ⋅ F2 ∑
0≤u<F

xn,c,v+u
x y

max

max

CNN layers summary 94

ynkv = bk +
C−1

∑
c=0

F−1

∑
u=0

fkcu ⋅ xn,c,v+u

f, b

x y*
N × C × I

K × C × F

N × K × O

input output

ReLUx y yncu = max{0, xncu}

max
F

x y yncv = max
0≤u<F

xnc,v+u

filters O = I − F + 1

O = I − F + 1

K = C, O = I

expression dimensions

A long sequence of layers

Deep convolutional neural networks

A deep convolutional neural
network is a chain of several
layers.

The typical pattern is to alternate
linear convolution and non-linear
activation, usually ReLU.

The other typical pattern is to
gradually reduce the spatial
resolution (via downsampling) and
increase the number of feature
channels.

Max-pooling is often used, in
combination with downsampling, to
reduce resolution further.

95

x

Σ

Σ

y

S

S

Σ S …

Σ

Σ

S

S

Σ S …

downsampling

more channels

AlexNet: a CNN for image classification

AlexNet contains 8 blocks, each formed by:

A linear convolution operator (with padding/downsampling)

A ReLU operator (except for f8)

An optional max pooling operator (with padding/downsamplin

96

c1 c2 c3 c4 c5 f6 f7 f8
vector of  

scores
C

P, S

fi, bi

xi−1 y* ReLU max
F,P,S xi

3 ⨉ 244 ⨉ 244

F filter size 11 5 3 3 3 6 1 1
K filters number 96 256 384 384 256 4096 4096 4096

F’ pooling size 3 3 - - 3 - - -
S’ pooling stride 2 2 - - 2 - - -

P filter padding 0 2 1 1 1 0 0 0

64
⨉ 27

 ⨉ 27

25
6⨉

 27
 ⨉ 27

38
4⨉

 13
 ⨉ 13

38
4 ⨉

 13
 ⨉ 13

25
6⨉

 6
⨉ 6

40
96

 ⨉ 1
⨉ 1

40
96

 ⨉ 1
⨉ 1

1000 ⨉ 1 ⨉ 1

S filter stride 4 1 1 1 1 1 1 1

P’ pooling padding 1 0 - - 0 - - -

The output is a 1000 ⨉ 1 ⨉ 1 tensor.

Each entry represents the score for
the hypothesis that the image contains
one out of a 1000 possible classes
(defined in ImageNet).

Class scores are converted into
probabilities by using the softmax
layer (multi-class generalization of the
sigmoid)

AlexNet: a CNN for image classification 97

c1 c2 c3 c4 c5 f6 f7 f8
vector of  

scores
C

3 ⨉ 244 ⨉ 244
64

⨉ 27
 ⨉ 27

25
6⨉

 27
 ⨉ 27

38
4⨉

 13
 ⨉ 13

38
4 ⨉

 13
 ⨉ 13

25
6⨉

 6
⨉ 6

40
96

 ⨉ 1
⨉ 1

40
96

 ⨉ 1
⨉ 1

1000 ⨉ 1 ⨉ 1

yc =
exc

∑C−1
k=0 exk

class scores

Softmaxx y

class probabilities

98

The perceptron

EvaluationLearning via SGD

Convolutional networks

Learning a CNN

Given a dataset the total
error is obtained by averaging the cross-entropy loss. 
 
 
The goal is to optimize this energy over the model
parameters .

(x1, y1), (x2, y2), …(xN, yN)

w

99

c1 c2 c3 c4 c5 c6 f7 f8 loss

bike

Ei(w)

w1 w2 w3 w4 w5 w6 w7 w8

xi

yiclass

image error

E(w) =
1
N

N

∑
i=1

Ei(w), Ei(w) = ℓ(yi, Φ(xi))

w* = argmin
w

E(w)

parameters w

ImageNet benchmark data

Learning a CNN

A CNN classifiers has millions of parameters.
Hence, learning requires massive amounts
of data.

ImageNet is a large collection of labelled
image.

The standard subset (ILSVRC12) contains

1,000 object classes

~1,000 example images for each class

1.2M training images in total

Without ImageNet (or a similar dataset) it
would have been impossible to develop
modern deep neural networks for computer
vision.

100

ImageNet benchmark data

Learning a CNN 101 Stochastic gradient descent

The objective function is an average over N = 1.2M
data points, and so is the gradient. The cost of a single
gradient descent update is way too large to be
practical.

Stochastic gradient

Approximate the gradient by sampling a single data
point (or a small batch of size N’ << N). Perform the
gradient update using the approximation.

Momentum

SGD can be accelerated by denoising the gradient
estimate using a moving average. This average is
called momentum.

102

E(w) =
1
N

N

∑
i=1

Ei(w) ⇒ ∇E(w) =
1
N

N

∑
i=1

∇Ei(w)

wt+1 = wt − ηt ∇Ei(wt), i ∼ U({1,2,…, N})
uniform distribution

mt+1 = 0.9 mt + ηt ∇Ei(wt), wt+1 = wt − mt+1

Further details and practical notes

Learning a CNN

Epochs & mini-batches

In practice, the data is visited not randomly, but in
random order (without repetitions). A full pass is
called an epoch.

Gradients are estimated by averaging mini-batches
of 10-1000 examples. This takes advantage of
parallel hardware such as GPUs.

Annealing schedule

The learning rate is gradually reduced over time,
usually by a factor 10 when no progress is observed.

This allows SGD to slow down and more accurately
land on an optimum as the latter is approached. 

Time required

On a fast GPU, it is possible to process ~1k images
per second for AlexNet.

An epoch thus lasts for 20 minutes. 40-100 epochs
are required, requiring 13-33 hours (faster training
requires tricks such as batch normalization).

On a CPU, this could be 100 x slower (four months).

Some networks are much slower (10 - 50 x).
ηt

103 104

The perceptron

EvaluationLearning via SGD

Convolutional networks

Evaluating deep networks

General approach

Evaluation is similar to any other machine learning
method, such as SVMs or the perceptron.

Evaluation must always be done on a held-out
validation or test set. This is because we need to
test generalization, not just model fitting.

 
 
Most benchmarks provide validation data for this
purpose. 
 
Evaluation can use the same loss used for training.
However, it is not uncommon to evaluate with respect
to other, more meaningful losses err as well. 

Top-k error

For classification problems, there are two popular
losses.

Classification error: the percentage of incorrectly
classified images in the validation set.

Top-k error: the percentage of images whose ground
truth class is not contained in the top-k more likely
classes according to the model.

The top-k error requires the network to estimate
confidences. Top-1 is the same as the classification
error.

105

E(Φ) =
1

|𝒟validation | ∑
(x,y)∈𝒟validation

err(Φ(x), y)

C18 Machine Vision and Robotics 
Computer Vision
Lecture 3: Backpropagation and automatic differentiation

 
Dr Andrea Vedaldi  
4 lectures, Hilary Term

For lecture notes, tutorial sheets, and updates see

http://www.robots.ox.ac.uk/~vedaldi/teach.html

The need for gradients

In order to train a neural network we minimise the
average prediction error

In order to do so, we require the gradients of the
error with respect to all parameters

argmin
w1,…,w8

E(w1, …, w8)

107

∇E = (dE
dw1

, ⋯,
dE
dw8)

c1 c2 c3 c4 c5 c6 f7 f8 loss

bike

Ei(w)

w1 w2 w3 w4 w5 w6 w7 w8

class yi

image xi error

parameters w

An efficient algorithm to compute the gradients

Backpropagation 108

ℝx
forward

backward

dE
dw1

dE
dw2

dE
dw3

dE
dw4

dE
dw5

dE
dw6

dE
dw7

dE
dw8

c1 c2 c3 c4 c5 c6 f7 f8 loss

bike

Ei(w)

w1 w2 w3 w4 w5 w6 w7 w8

class yi

image xi

Chain rule: scalar version 109

f1 f2 fn−1 fn
xnx1

⋯
x0 xn−1

Chain rule (scalar version)

A composition of functions

The derivative is obtained by using the chain rule

n

xn = (fn ∘ fn−1 ∘ ⋯ ∘ f2 ∘ f1) (x0)

dxn

dx0
=

dfn
dxn−1

×
dfn−1

dxn−2
× ⋯ × df2

dx1
× df1

dx0

110

f1f2fn−1fn
xn x1

⋯
x0xn−1

The operator rearranges the elements of a tensor
as a column vector, unrolling the tensor dimensions.

The order of unrolling is not essential, but a consistent
convention must be used. PyTorch uses the row major
convention:

 
 
 
 
 
 
 
By reshaping tensors in this manner, 
a tensor layer y = f(x) can be thought of as  
a vector layer vec y = f(vec x).

vec

Reshaping tensors into vectors

The operatorvec 111

tensors

f

vec f

vectors

vec
vec [y00 y01

y10 y11] =

y00
y01
y10
y11

vec y vec x

y x

Derivative of tensor-valued functions

We use the operator to reduce a tensor
derivative to a Jacobian matrix:

1. converts the tensor function to
a vector function .

2. The derivative of a vector function is its
Jacobian matrix.

3. The Jacobian matrix contains the derivative of
each element of the output vector with
respect to each element of the input vector

.

vec

vec y = f(x)
vec y = (vec f)(vec x)

vec y

vec x

112

vec f

Jacobian  
matrix

d vec f
d vec x

vectorised  
tensor 

function
vec xvec y

vec x⊤

vec y

Using and matrix notationvec

Chain rule (tensor version) 113

f1f2fn−1fn
xn x1

⋯
x0xn−1

⋯
d vec fn

d vec xn−1

d vec fn−1

d vec xn−2

d vec f1
d vec x0

d vec f2
d vec x1

d vec xn

d vec x0

The (unbearable) size of tensor derivatives 114

32 ⨉ 32 ⨉ 512

32 ⨉ 32 ⨉ 512

275 B elements

1 TB of memory 
required !!

The size of these Jacobian matrices is huge. Example:

vec f

d vec f
d vec x

vec xvec y

vec y

vec x⊤ x

y

Unless the output is a scalar 115

f

Now the Jacobian reduces to a gradient and has the same size as . Example:x

1 ⨉ 1 ⨉ 1

32 ⨉ 32 ⨉ 512

Just 2MB of
memory

524K elements

Scalar

This is always the case  

if the last layer 
is the loss function

d vec f
d vec x

vec x

vec x⊤

y

x

y

Assume that is a scalarxn

Backpropagation 116

f1f1fn−1fn ⋯

too largesmall

compute this first !

⋯
d vec fn

d vec xn−1

d vec fn−1

d vec xn−2

d vec f1
d vec x0

d vec f2
d vec x1

pn−1

xn x1 x0xn−1

× × × ×
⏟

Assume that is a scalarxn

Backpropagation 117

too largesmall

pn−2

d vec(fn−1 ∘ fn)
d vec xn−2

⋯
d vec f1
d vec x0

d vec f2
d vec x1

× × ×

f1f1fn−1fn ⋯
xn x1 x0xn−1

Assume that is a scalarxn

Backpropagation 118

too largesmall

p1

d vec f1
d vec x0

d vec fn ∘ ⋯ ∘ f2
d vec x1

f1f1fn−1fn ⋯
xn x1 x0xn−1

×

Assume that is a scalarxn

Backpropagation 119

small

d vec fn ∘ ⋯ ∘ f1
d vec x0

p0

f1f1fn−1fn ⋯
xn x1 x0xn−1

Vector-Jacobian product fBP

The key step is the calculation of the  
vector-Jacobian product

 
 
The result is a vector that has the same size
as , so not too large.

The Jacobian matrix is still too large to explicitly
compute.

The key idea is to use layer-specific
optimisation to compute without computing
the Jacobian matrix explicitly.

p′￼ = fBP(p; x) = p ⋅
d vec f
d vec x

p′￼

x

fBP

120

fg
z y

p

d vec g
d vec y

d vec f
d vec x

x
rest of network

= p′￼

p′￼ = p ⋅
d vec f
d vec x

fBP
p

x

×

Sigmoid layer

An example of fBP

Assume that is a vector (otherwise use).

Let be the sigmoid activation layer:

 

 
The Jacobian is then given by:

 

Most derivatives are equal to zero:

The Jacobian is the diagonal matrix

is then given by

 
 

x vec

y = f(x)

f(x) =

σ(x1)
σ(x2)

⋮
σ(xC)

, σ(x) =
ex

ex + e−x
.

df
dx

=

dσ(x1)
dx1

dσ(x1)
dx2

… dσ(x1)
dxC

dσ(x2)
dx1

dσ(x2)
dx2

… dσ(x2)
dxC

⋮ ⋮ ⋱ ⋮
dσ(xC)

dx1

dσ(xC)
dx2

…
dσ(xC)

dxC

.

dσ(xc)
dxk

= {
·σ(xc), c = k,
0, c ≠ k .

, ·σ(x) =
dσ
dx

(x) .

df
dx

=

·σ(x1) 0 … 0
0 ·σ(x2) … 0
⋮ ⋮ ⋱ ⋮
0 0 … ·σ(xC)

.

fBP

fBP(p; x) = p ⋅
df
dx

= [p1
·σ(x1) p2

·σ(x2) ⋯ pC
·σ(xC)] .

121 as a reversed layerfBP

The function is a forward layer .

The function defines a backward layer operating in
the reverse direction .

This generates a new mirror block diagram; the forward
diagram feeds into the backward diagram via .

f y = f(x)

fBP

p′￼ = fBP(p; x)

x

122

fBP

f

forward

backward

x

x

p

y = f(x)

p′￼ = p ⋅
d vec f
d vec x

 computes gradientsfBP

So what are these vectors anyways?

Each is the gradient of the network output with
respect to the corresponding variable :

Thus computes a gradient out of another gradient:

p

p z
x

p′￼ =
dz
dx

or even just p′￼ = dx

fBP

p =
dz
dy

⇒ p′￼ = fBP(p; x) =
dz
dx

123

fg
z y x

rest of the network

fBPgBP

dz
dy

dz
dz

= 1 dz
dx

p p′￼

Keeping track of calculations for automatic differentiation

Compute graphs

The compute graph is a
mechanism to keep track of the
calculations in a program.

It can be used to automatically
deduce which computations are
required to compute the
gradients.

These computations can then be
added to the graph and the
process repeated to obtain
higher-order derivatives.

124

f1f2fn−1fn
xn x1

⋯
x0xn−1

fBP
1fBP

2fBP
n−1fBP

n

dxn dx1
⋯

dx0dxn−1

Keeping track of calculations for automatic differentiation

Compute graphs

The compute graph is a
mechanism to keep track of the
calculations in a program.

It can be used to automatically
deduce which computations are
required to compute the
gradients.

These computations can then be
added to the graph and the
process repeated to obtain
higher-order derivatives.

The graph is more commonly
shown the other way around, with
the forward direction left to right.

125

f1 f2 fn−1 fn
xnx1

⋯
x0 xn−1

fBP
1 fBP

2 fBP
n−1 fBP

n

dxndx1
⋯

dx0 dxn−1

forward

backward

Conv, ReLU, MP and their transposed blocks

Backpropagation network 126

conv ReLU MP
x0 x3

convBP ReLUBP MPBP

dx1dx0 dx2

forward

backward

x1 x2

dx3
⋯

⋯

⋯

Sometimes much less information is needed

Sufficient statistics and bottlenecks 127

on/off  
mask

nothing!* pooling  
switches

conv ReLU MP
x0 x3

convBP ReLUBP MPBP

dx1dx0 dx2

forward

backward

x1 x2

dx3
⋯

⋯

⋯

* Unless the gradients w.r.t. the filter parameters are also needed

A PyTorch example

Automatic differentiation (AutoDiff)

Modern machine learning toolboxes provide AutoDiff.

This means that calculations can be performed as
normal in a programming language.

Underneath, the toolbox builds a compute graph.

Eventually, gradients can be requested.

128

x1

x2

x4

x3

w

sum()
plus()

conv()

x0

ReLU()

import torch

Define two random inputs, both requiring grads

x0 = torch.randn(1,3,20,20, requires_grad=True)

x1 = torch.randn(1,10,18,18, requires_grad=True)

Get a convolutional layer. It contains 
a parameter tensor conv.weight with requires_grad=True

conv = torch.nn.Conv2d(3,10,3)

Intermediate calculations

x2 = conv(x0)

x3 = torch.nn.ReLU()(x2) + x1

x4 = x3.sum() # Scalar!

Invoke AutoGrad to compute the gradients

x4.backward()

Print the gradient shapes

print(x0.grad.shape)

print(x1.grad.shape)

print(conv.weight.grad.shape)

dx4

dx3

dx0

dx1

dw

dx2

implicit!

C18 Machine Vision and Robotics 
Computer Vision
Lecture 4: Applications

 
Dr Andrea Vedaldi  
4 lectures, Hilary Term

For lecture notes, tutorial sheets, and updates see

http://www.robots.ox.ac.uk/~vedaldi/teach.html

Label individual pixels

Semantic image segmentation 130

sofa

personcat

Detection, verification, recognition, emotion, 3D fitting

Face analysis

E.g. VGG-Face

131

same different

Detection, word recognition, character recognition

Text spotting

E.g. SynthText and VGG-Text

http://zeus.robots.ox.ac.uk/textsearch/#/search/

132

CREAM

Extract individual object instances

Object detection 133

boat : 0.853 person :0.993

person :0.981
person :0.972

person :0.907

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation 
R. Girshick, J. Donahue, T. Darrell, J. Malik, CVPR 2014

134

Architectures

TrackingDetection

Segmentation

135

Architectures

TrackingDetection

Segmentation

Evolution

Neural network architectures 136

AlexNet (2012)

5 convolutional layers

3 fully-connected layers

Evolution

Neural network architectures 137

16 conv layers

AlexNet (2012) VGG-M (2013) VGG-VD-16 (2014)

Evolution

Neural network architectures 138

AlexNet (2012) VGG-M (2013) VGG-VD-16 (2014) GoogLeNet (2014)

Evolution

Neural network architectures 139

AlexNet (2012) VGG-M (2013) VGG-VD-16 (2014) GoogLeNet (2014)

Evolution

Neural network architectures 140

AlexNet (2012)

VGG-M (2013)

VGG-VD-16 (2014)

GoogLeNet (2014)

ResNet 152 (2015)

ResNet 50 (2015)

152 convolutional layers

50 convolutional layers

16 convolutional layers Krizhevsky, I. Sutskever, and G. E. Hinton.
ImageNet classification with deep convolutional

neural networks. In Proc. NIPS, 2012. 

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S.
Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich. Going deeper with
convolutions. In Proc. CVPR, 2015. 

K. Simonyan and A. Zisserman. Very deep
convolutional networks for large-scale image

recognition. In Proc. ICLR, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep
residual learning for image recognition. In Proc.

CVPR, 2016.

3 ⨉ more accurate in 3 years

Accuracy 141

To
p

5
er

ro
r

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

caffe-alex
vgg-f

vgg-m

googlenet-dag

vgg-ve
ryd

eep-16

resnet-50-dag

resnet-101-dag

resnet-152-dag

M
or

e
ac

cu
ra

te

0.0

0.3

0.7

1.0

1.3

1.6

2.0

2.3

2.6

caffe-alex
vgg-f

vgg-m

googlenet-dag

vgg-ve
ryd

eep-16

resnet-50-dag

resnet-101-dag

resnet-152-dag

5 ⨉ slower

Speed 142

sp
ee

d
(im

ag
es

/s
 o

n
Ti

ta
n

X)

0

100

200

300

400

500

600

700

800

caffe-alex
vgg-f

vgg-m

googlenet-dag

vgg-ve
ryd

eep-16

resnet-50-dag

resnet-101-dag

resnet-152-dag

Sl
ow

er

0.0

0.6

1.3

1.9

2.5

3.1

3.8

4.4

5.0

caffe-alex
vgg-f

vgg-m

googlenet-dag

vgg-ve
ryd

eep-16

resnet-50-dag

resnet-101-dag

resnet-152-dag

 Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers

 Reason: far fewer feature channels (quadratic speed/space gain)

 Moral: optimize your architecture

Num. of parameters is about the same

Model size

 Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers

 Reason: far fewer feature channels (quadratic speed/space gain)

 Moral: optimize your architecture

143

m
od

el
 s

iz
e

(M
Bs

)

0

63

125

188

250

313

375

438

500

caffe-alex
vgg-f

vgg-m

googlenet-dag

vgg-ve
ryd

eep-16

resnet-50-dag

resnet-101-dag

resnet-152-dag

La
rg

er

0.0

0.8

1.5

2.3

3.0

3.8

4.5

5.3

6.0

caffe-alex
vgg-f

vgg-m

googlenet-dag

vgg-ve
ryd

eep-16

resnet-50-dag

resnet-101-dag

resnet-152-dag

144

Architectures

TrackingDetection

Segmentation

Label individual pixels

Semantic image segmentation 145

c1 c2 c3 c4 c5 f6 f7 f8

input = image output = image
convolutional fully-connected

The part of the image looked at by a neuron

Receptive field

Receptive Field (RF) of a neuron

The subset of the image affecting the value of a neuron

Small vs large RFs

Small RF: spatially specific, but can only account for small
visual structures

Large RF: spatially a-specific, but can account for large visual
structure

How to make the RF large

Use large filters

Chain several filters

Interleave downsampling along the chain  
E.g. downsampling 2x increases the RF size 2x.

146

neuron  
receptive field

neuron
value

image

Comparing the receptive fields

Convolutional vs fully connected layers 147

Neurons are spatially selective, can
be used to localize things.

Neurons are global, do not
characterize well position.

Which one is 
more useful for 

pixel level labelling?

Convolutional layers Fully connected layers

The filter support fills the entire input tensor

A fully connected layer is just a large filter 148

F(k)

K

w(k)

1 ⨉ 1 ⨉ K

✱
=

Fully-convolutional neural networks 149

class predictions

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional models for semantic segmentation. In Proc. CVPR, 2015

Fully-convolutional neural networks

Dense evaluation

Apply the whole network convolutional

Computes a vector of class probabilities at each
pixel  

Downsampling

For efficiency, the input data is substantially down
sampled in the network

The output is fairly low resolution (e.g. 1/32 of
original)

150

151

Architectures

TrackingDetection

Segmentation

The object detection problem

The goal of object detection is to simultaneously classify, enumerate, and localise known object types in an
image.

A key challenge is that the number of object instances is not known a priori.

152

boat : 0.853 person :0.993

person :0.981
person :0.972

person :0.907

Region-based Convolutional Neural Network (R-CNN)

Detections with CNNs

CNNs compute a fixed number of image features. A new computational mechanism is needed in order to detect a
variable number of objects.

Region-based CNN (R-CNN) use a region proposal algorithm to extract a large number of potential object
regions, and then a CNN to assess each one of them.

153

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation  
R. Girshick, J. Donahue, T. Darrell, J. Malik, CVPR 2014

CNN chair

background

potted plant

CNN

CNN

Obtain a shortlist of regions that may contain objects

Region proposal algorithm

A region proposal algorithm produces a shortlist of regions that are likely to contain whole objects.

The Selective Search method by [van de Sande, Uijlings et al.]):

Uses hierarchical segmentation based on colour uniformity and image edges.

Produces about ~ 2000 regions / image with a > 95% probability of hitting any relevant object in the image.

154

Dilate, crop, reshape

From proposals to CNN features

A region proposal is slightly dilated to capture some visual context and then cropped and resized in order to be
passed to a CNN.

155

Dilate Crop & scale

Anisotropic

227 x 227

Propose

Evaluate CNN

From proposals to CNN features

The cropped and resize region is passed through a CNN to extract a corresponding feature vector (or image
representation).

156

Dilate Scale

Anisotropic

227 x 227

c5c1 c2 c3 c4 f6 f7

CNN features

Up to FC-7  

AlexNet

Feature vector

4096 D

Run an SVM or similar on top

Classification of a region

The feature vector is then classified by means of a linear predictor (or a multi-layer perceptron). There are C + 1
possible object types, including “no object” (background).

157

Scale

Anisotropic

227 x 227

c5c1 c2 c3 c4 f6 f7

CNN features

Up to FC-7  

AlexNet

Feature vector

4096 D

Label

One out of N

aeroplane

cat

dog

horse

person

…

CNN

Bounding-box regression

Region adjustment

A second linear regression is used to refine the bounding box location. In the example, the person’s legs were
not included in the proposal, but regression can fix this mistake.

158

Scale

Anisotropic

227 x 227

c5c1 c2 c3 c4 f6 f7

CNN features

Up to FC-7  

AlexNet

Feature vector

4096 D

Box adjustment

dx1, dx2, dy1, dy2

Ridge  
regress.

Based on overlap with ground truth bounding box

Positive and negative training regions 159

a positive  
training region  

 
overlap > 70%

a negative  
training region  

 
overlap < 30%

Ren, He, Girshick, & Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NeurIPS 2015

the ground-truth  
region

At the time of introduction (2013)

R-CNN results on PASCAL VOC

Despite its conceptual simplicity, at the time of introduction R-CNN was substantially better than all existing
methods.

This is due to the power of the CNN classifier.

Importantly, the CNN is pre-trained on the ImageNet data (1M images) for classification (using only image-level
labels), then fine-tuned on PASCAL VOC data (5K images) for object detection (using region-level labels).

160

VOC 2007 VOC 2010
DPM v5 (Girshick et al. 2011) 33.7% 29.6%

UVA sel. search (Uijlings et al. 2013) 35.1%
Regionlets (Wang et al. 2013) 41.7% 39.7%
SegDPM (Fidler et al. 2013) 40.4%

R-CNN (TorontoNet) 54.2% 50.2%
R-CNN (TorontoNet) + bbox regression 58.5% 53.7%

R-CNN (VGG-VD) 62.1%
R-CNN (ONet) + bbox regression 66.0% 62.9%

Integrate more of the blocks as CNN components

R-CNNs as a complex CNN

R-CNN can be improved substantially in three ways:

By integrating all blocks in a end-to-end trainable CNN

By accelerating region-specific computations

By replacing region proposal generation with something better

161

CNN  
regressor

classimage CNN  
classifier

CNN  
features

Region  
proposals

box

Accelerating R-CNN

Problem: The fundamental bottleneck is
evaluating the CNN from scratch for each
image region.

Solution: compute all the convolutional
features just once, and then crop directly the
resulting feature map.

Only the fully-connected layers are evaluated
for each region.

How: spatial pooling layer.

162

c5c1 c2 c3 c4 f6 f7

c5c1 c2 c3 c4 f6 f7

c5c1 c2 c3 c4 f6 f7

crop

c5c1 c2 c3 c4

f6 f7

f6 f7

f6 f7

crop

The Spatial Pooling (SP) layer

The spatial pooling layer (SP) max-pools the convolutional feature responses in a given region.

This can be used to extract many region-specific feature vectors by reusing the same convolutional features.

163

He, Zhang,Ren & Sun, “Spatial Pyramid Pooling (SPP) in Deep Convolutional Networks for Visual Recognition”, ECCV 2014

any given region

c5c1 c2 c3 c4

feature  
vector

maxpooling

As a building block

The Spatial Pooling (SP) layer

The SP layer extracts a feature
vector for each of the R regions.

The output are thus R tensor of size
1 ⨉ 1 ⨉ C.

Alternatively, this can be seen as a
single 1 ⨉ 1 ⨉ C ⨉ R tensor.

164

SPfeature  
map

list of 
R regions

 R region-specific 
feature vectors

He, Zhang,Ren & Sun, “Spatial Pyramid Pooling (SPP) in Deep Convolutional Networks for Visual Recognition”, ECCV 2014

SP with multiple subdivisions

The Spatial Pyramid Pooling Layer

SPP is similar to SP, but pools features in the tiles of a grid-like subdivision of the region.

The resulting feature vector captures the spatial layout of the original region.

165

max pooling

Summary

Fast R-CNN 166

c5c1 c2 c3 c4

f6 f7 chair

selective  
search

SPP
r6 r7 box refinement

f6 f7 background

r6 r7 box refinement

f6 f7 potted plant

r6 r7 box refinement
Ross Girshick. “Fast R-CNN”. ICCV 2015

same  
parameters

Both faster and better!

Fast and Faster R-CNN performance

Detection mAP on PASCAL VOC 2007, with VGG-16 pre-trained on ImageNet.

167

Method Time / image mAP (%)

R-CNN ~50s 66.0

Fast R-CNN ~2s 66.9

Faster R-CNN 198ms 69.9

Example detections 168

bus: 0.980

car : 1.000

dog : 0.989

person : 0.992

person : 0.974

horse : 0.993

boat : 0.853 person : 0.993

person : 0.981

person : 0.972

person : 0.907

cat : 0.928

dog : 0.983

person : 0.753

Detection challenge (comp4: train on own data)

PASCAL VOC Leaderboards 169

0

22.5

45

67.5

90

R
-C

N
N

SD
S

R
-C

N
N

 (b
bo

x
re

g)

Fe
at

ur
e

Ed
it

YO
LO

R
-C

N
N

N
U

S_
N

IN

R
-C

N
N

 (b
bo

x
re

g)

Ba
by

Le
ar

ni
ng

N
U

S_
N

IN
_c

20
00

U
M

IC
H

_F
G

S_
ST

R
U

C
T

se
gD

ee
pM

Fa
st

 R
-C

N
N

 V
G

G
16

 e
xt

ra
 d

at
a

N
et

w
or

ks
 o

n
C

on
vo

lu
tio

na
l F

ea
tu

re
 M

ap
s

O
H

EM
+F

R
C

N
, V

G
G

16

D
EE

P_
EN

SE
M

BL
E_

C
O

C
O

R
PN

Fa
st

 R
-C

N
N

 +
 Y

O
LO

M
R

_C
N

N
_S

_C
N

N

H
yp

er
N

et
_S

P

H
yp

er
N

et
_V

G
G

SS
D

30
0

VG
G

16
 0

7+
+1

2

M
R

_C
N

N
_S

_C
N

N
_M

O
R

E_
D

AT
A

**
 H

R
C

N
N

 **

Lo
cN

et

SS
D

51
2

VG
G

16
 0

7+
+1

2

Fa
st

er
 R

C
N

N
 b

as
el

in
e

(V
O

C
+C

O
C

O
)

M
N

C
 b

as
el

in
e

PV
AN

et
 9

.0
-L

ite

IO
N

IF
R

N
_0

7+
12

H
FM

_V
G

G
16

SS
D

30
0

VG
G

16
 0

7+
+1

2+
C

O
C

O

SS
D

51
2

VG
G

16
 0

7+
+1

2+
C

O
C

O

O
H

EM
+F

R
C

N
, V

G
G

16
, V

O
C

+C
O

C
O

R
-F

C
N

, R
es

N
et

 (V
O

C
+C

O
C

O
)

PV
AN

et
 9

.0

Fa
st

er
 R

C
N

N
, R

es
N

et
 (V

O
C

+C
O

C
O

)

http://tinyurl.com/h7uzkov

2014 20164 ⨉ improvement in accuracy

170

Architectures

TrackingDetection

Segmentation

Draw a bounding box first, then track it automatically

Tracking 1/2: select & track 171

Track pre-programmed objects (e.g. faces) fully automatically (no manual selection required)

Tracking 2/2: detect & track 172

Example of specific trackers 173

bus cat bunny

monkey plane bike

fox car tiger

Tracking flavours 174

Select & track  
Open ended, but requires manual input

Detect & track  
Restricted to the object the program knows, but
fully automatic

Typical applications: people, faces, cars

New objects can be learned, 
but at a cost

Track pretty much anything

Cheap to track something new, but still
requires manual input

Open-ended tracking

Select & track

Problem: Track an arbitrary object with the sole input of a single bounding box in the first frame of the video  
 
Challenge: The tracker must be object-agnostic and learn what we mean from a single example

175

Learn the object in one frame, seek it in the next

Tracking via iterated detecktion

Repeat at times t = 0, 1, 2, 3, …

At frame t 		 learn a model of the object vs background

At frame t + 1	 use the model to find the new object location

176

End-to-end representation learning for
Correlation Filter based tracking, Jack
Valmadre, Luca Bertinetto, João F. Henriques,
Andrea Vedaldi, Philip H.S. Torr, CVPR, 2017.

+-

Describe and match

How our tracker works

Descriptor computation 
 
A neural network φ maps each  
image window to a visual descriptor

Two images of different sizes

small:	 exemplar at time t
big:	 search area at time t + 1

Descriptor matching 
 
Computes the descriptor similarity at all
translated sub-windows

177

Cross-correlation  
layertime t

time t + 1

image
windows descriptors matching 

result
neural 

net

ImageNet Video

Training data

Official task is object detection from video - can be easily adapted to arbitrary object tracking

Almost 4,500 videos and 1,200,000 bounding boxes!

30 classes: mostly animals (~75%) and some vehicles (~25%)

178

Recap

C18 Computer Vision

Prof. Andrea Vedaldi (4 lectures)

Lecture 1: Matching, indexing, and retrieval

Lecture 2: Convolutional neural networks

Lecture 3: Backpropagation and automated differentiation

Lecture 4: Applications

Prof. Victor Prisacariu (4 lectures)

3D vision

179

