C18 Computer Vision 2

Overview

Prof. Andrea Vedaldi (4 lectures) Feedback form
Lecture 1: Matching, indexing, and retrieval

n . . . Lecture 2: Convolutional neural networks
C18 Machine Vision and Robotics Lecture 3: Backpropagation and automated

Co m puter VISlO n differentiation

Lecture 4: Applications

Introduction Prof. Victor Prisacariu (4 lectures)

3D vision

Dr Andrea Vedaldi
4 lectures, Hilary Term

For lecture notes, tutorial sheets, and updates see
http://www.robots.ox.ac.uk/~vedaldi/teach.html

materials 3

Notes, handout and tutorial sheet

A convolutional neural network primer C18 Machine Vision and Robotics
For the Oxford C18 and AIMS Big Data courses CO m p u te r Vl S | O n

Andrea Vedaldi
vedaldi@robots.ox.ac.uk

Look for materials in WebLearn or at i
Lecture 1: Matching, indexing, and retrieval

http://www.robots.ox.ac.uk/~vedaldi/teach.html

Version 1.0 August 2018

Dr Andrea Vedaldi
4 lectures, Hilary Term

For lecture notes, tutorial sheets, and updates see
http://www.robots.ox.ac.uk/~vedaldi/teach.html

The Internet: 50 billion images and counting

It may not contain the picture you just took

WIKIPEDIA
The Free Encyclopedia

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia

Intaracsian

e —

& Login Create account

Aticle Talk Read Edit Viewhistory |Search

All Souls College, Oxford

From Wikipedia, the free encyclopedia

The Warden and the College of the Souls of all Faithful People deceased in the
University of Oxford!'] or All Souls College is one of the constituent colleges of the
University of Oxford in England.

Unique to All Souls, all of its members automatically become Fellows, i.e., full members of
the College's govering body. It has no undergraduate members, but each year recent
graduates of Oxford and other universities compete in "the hardest exam in the world"2/(34]
for Examination Fellowships.

o Sir Julian Bullard
The gates on Radcliffe Square & « Myles Bumyeat
o Lionel Butler
« Sir Raymond Carr
« David Caute
« Alasdair Clayre
« Christopher Codrington
« G. A. Cohen
« Peter Conrad
« George Nathaniel Curzon
« Matthew d'Ancona
« David Daube
+ David Dilks
« Michael Dummett
« Sheppard Frere
« Robert Gascoyne-Cecil, 3rd Marquess of Salisbury
. « Gabriel Gorodetsky
Aview of All Souls' College &
quadrangle from ts Radoliffe * Andrew Harvey
Square gate « Reginald Heber
« Rosemary Hill

Coordinates: (g 51.763276°N 1.253041°W

Patrick Neill

Avner Offer

David Pannick QC

Derek Parfit

Anthony Quinton

Sarvepalli Radhakrishnan \
John Redwood {
A. L. Rowse

Peter Salway

Graeme Segal

Amartya Sen

Patrick Shaw-Stewart

Gilbert Sheldon

Boudewiln Sirks

Alfred C. Stepan

Joseph E. Stiglitz

Adam Thiriwell

Sir Guenter Treitel

Sir John Vickers

William Waldegrave

Goal: search a large collection for an image of the same object

Matching local features Global geometric verification

Indexing using visual words Evaluating retrieval systems

Define a similarity function between images 12

F(l1, I2) = confidence that the object is the same

Matching local features

Image similarity (I) 13

Compare images as vectors of pixels

F(Il,lz) = —||11 - I2||2

(194 - 107)2

154 1070 131 132 118 126 130 120 134 140
195 94l 104 126 120 124 125 129 129 133
19 196 196 196 197 197 197 197 195 (1 95 _94)2 8 o4 16 128 17 128 131 134 136
195 186 19 1e6 19 196 197 197 195 % 101 Am e 121 128 136 141 143
194 184 195 185 195 195 195 106 196 10 108 120 118 133 130 134 134 132
194 194 194 194 195 195 195 195 196 10 106 122 120 126 125 128 129 128
195 195 (195 2 15| e ms 128 125 132 139
19 186 19 186 197 1e7 197 1e7 196 (1 95 -11 5)2 126 a7 M8 07 122 127 135 13 187
194 195 195 196 196 196 196 196 196 100 107 16 116 16 121 128 132 143
194 195 195 196 195 196 195 196 196 12091 112 114 128 129 139 142 147
194 185 195 1s6 195 196 195 196 196 148 135 99 110 19 126 13 142 145
194 195 195 196 196 196 196 196 196 106 139 124 10 17 125 133 143 139
194 195 195 196 195 196 195 196 196 108 112 130 118 122 188 141 137 148
194 185 195 186 195 196 195 196 196 105 106 118 181 126 182 142 134 144
194 185 195 196 19 196 196 196 196 o7 101 M5 19 ™7 129 13 135 135
194 195 195 196 196 196 196 196 196 o5 88 110 136 125 128 140 148 144
19 196 19 196 195 196 195 196 196 o1 e M9 132 125 131 138 13 149
196 186 19 196 19 196 195 196 196 97 100 123 120 131 131 135 136 150
196 196 19 196 196 196 196 196 196 94 106 13 127 127 131 13 136 148

Why do pixel values differ so much?

Nuisance factors

Viewpoint Visibility lllumination Camera Noise

14

Viewpoint and visibility 15

Handling a variable viewpoint
As viewpoint changes pixels “move around” or even appear/disappear
We need to match corresponding pixels before we can compare them

Matching and transformation

Matching can be seen as transforming or warping an image to another

Matching and transformation

Matching can be seen as transforming or warping an image to another

Similarity transformations 22

If the camera rotates around and translates along the optical axis, the image transforms according to a similarity:
scale, rotation, and translation.

tX

t,

RO) = cosf —sinf
© [sin@ cos @

For pure camera rotation or if the object is planar, then the image transforms with an homography (approximated
as an affine transformation).

BN

=[] 6+ [

Comparing local features using normalisation

I normalised
feature frames cro features normalisation
P features

\ 4

Consider corresponding feature frames f and f'.
Then normalisation undoes the effect of a viewpoint change.

After normalisation, pixels are in correspondence (matched) and can be compared directly.

Descriptors: SIFT

normalised features spatial histogram of gradients SIFT descriptor

Y N oy
NN 74
d
-~ | |
— = | ——

LI
20 40 60 80 100 120

In practice, one compares descriptors rather than pixels. Descriptors:
handle residual distortions, noise, illumination;
make the representation more compact.

The most important example is the SIFT descriptor.

29

Summary: descriptors 30
. normalised . vector
image features features descriptors comparison
"(l'v" ‘ ; ::3
L\
\5} '\A@ \ 80|
VA w di
\-“J\‘\ “
20
—lldi —d2lI2
120
- d2

AL

i
20 40 60 80 100 120

For each pair of image features
Extract and normalize the corresponding image patches
Compute their descriptor vectors
Compare descriptors using the Euclidean distance

Question: how do we get the
features in the first place?

Exhaustive matching

~a| s~

el
B
=

2P

A
I
g
it

‘«

(SRS

i
{ .

<=
i

O Iy v
=<2 | r[~

]

'
1

«
t

s el
-1a

PR RN
s lele

Exhaustive approach:
Extract all possible features (all circles or all ellipses) from both images
Test all feature pairs for possible matches

Testing all features guarantees that, if the “same feature” is visible in both images, then the corresponding patches
are considered for matching.

We need a method to
select a small subset of
features to match.

The cost of exhaustive matching is O(N1 N2) where N; is the number of features extracted from image I,
Even after sampling the search space, the number of all possible features Ni is very large (~108).

Exhaustive matching is just too expensive.

Co-variant feature detectors

A detector is a rule that selects a small subset of features for matching.

The key is co-variance: the selection mechanism must pick the “same” (i.e. corresponding) features after an
image transformation.

Example of a co-variant detection rule: “pick all the dark blobs”.

Co-variant detection, invariant descriptor

A feature extracted by the Harris-Affine detector independently from different frames of a video.

Note that the feature seems “glued on” the scene.

34

Co-variant detector types

similarity
= Properties of a detector
repeatability
generality
speed

Benefits of increased covariance
handle more general motions / objects

Cons of increased covariance
less robust
slower

Discriminability and support

enlarge for context

blob detector

all blobs look
the same

In practice, descriptors are computed in a region surrounding the feature.

This is because the feature “visual anchors” (e.g. blobs) look the same and would be confused during matching.

From local to global matching 38
Local matching Global matching
So far we have detected and then matched local However, our goal is to compare images as a whole,
Global geometric verification features. not just individual patches.
This is because normalisation is only possible if Next, we will see how to build a global similarity
features are unoccluded and approximately planar. score from patch-level local comparisons.
Small features are much more likely to satisfy such
assumptions.
On the contrary, the image as a whole is non-planar
and contains plenty of self-occlusions.
39 40

Matching all local features

Step 0: get an image pair

number of matches: 0

Matching all local features

Step 1: detect local features f and extract descriptors d

number of matches: 0

The left image has m features

(f1, d1), ..., (fm, dm)

Right image has n feature (1, d"1), ..., (F'n, d'n)

Matching all local features 41 Matching all local features 42
Step 2: match each descriptor to its closets one Step 3: reject ambiguous matches using the 2nd-nn test
number of matches: 2048 number of matches: 293
Match the i-th left feature to its right nearest-neighbour nn(j), where: Accept a match i — nn(j) only if it is at least a fraction = = 0.9 away from other possible matches:
nn(i) = argmin ||d; — d/]? ld; — d;,,|I> < 7 argmin ||, - &
j=1,...m Jj#nn(i)
43

Matching all local features

Step 4: geometric verification

number of matches: 127

The final step is to test whether matches are consistent with an overall image transformation.

Inconsistent matches are rejected (see RANSAC).

RAN optimization robust to outliers

(RANdom SAmple Consensus)

e o o 50

Input: M tentative feature matches (x1, x’1), ..., (Xm, X'wm).

Output: affine transformation (A*,T*) with the largest number of inlier matches:

(A*,T*) = argmax, y ‘ {i Cxi—Ax; - T < s} ‘

1.

Repeat a large number of times:
A. Randomly sample a minimal subset of matches sufficient to estimate (A, T).
B. Find inliers, i.e. other matches that are compatible with (A,T).

2. Return (A*,T*) as the pair (A,T) with the largest number of inliers.

Image similarity (I1)

By counting number of verified local feature matches

F(I,,I,) = # of matches after geometric verification

Indexing using visual words

From image matching to image search

Our matching strategy can be used to search a handful of images exhaustively. However, this is far to slow to
search a database of a billion or more images such as Flickr, Facebook, or the Internet.

Example:
L images in the database

N features per image (incl. query)
D dimensional feature descriptor
Exhaustive search cost: O(N2 L D)

Memory footprint: O(NLD)

e.g. 106- 1010 (Facebook)

e.g. 103 (~ SIFT detector)

e.g. 102 (~ SIFT descriptor)

10" - 105 ops = 100 days - 300 years
1TB - 1PB

Goal: develop a method to search a million or more images on a single computer in under a second (and many

more on computer clusters).

Issues:
memory footprint
matching cost (time)
precision and recall

The inverted index

Used by Google to search the Web instantaneously

term ¢

inverted index

Inverted list for ¢

and
big
dark
did
gown
had
house
in
keep
keeper
keeps
light
never
night
old
sleep
sleeps
the
town
where

= N R e U N e

(6,2)

(2,2) (3,1)

(6,1)

(4,1)

(2,1)

(3,1)

(2,1) (3,1)

(5,1) (6,2)

(L,1) (4,1) (5,2)

(L,1) (2,2) 3,1) (4,1)

(4, 1)

(6,1)

(1,3) (2,2) (3,3) (4,1) (5,3) (6,2)
(1,1) (3,1)

(4,1)

\

Inverted index
For each word, lists all documents containing it as
pairs {DocID, WordCount)

Efficient query resolution: given a word, return the
corresponding list

Indexing images
Image = document
Word = ?

The key is to understand how to
extract “words” from images

Visual words

visual words

visual descriptors

descriptor d

P visual visual
vt M word k dictionary
SN [Z s k:ﬂ'(d)
> @ <{000
| | |
1 n continuous discrete
_— L space space
-]
[]
a0 "n "
[]
. []
]
[] [] - =
" n E.g. 128D Kelements L
for SIFT

. @}

The K-means algorithm

For learning a visual words vocabulary

The visual vocabulary is obtained by forming K clusters of example descriptors (d, ..., d,,). Here M may be in
the order of a 1M, and K in the order of 104- 105.

The K cluster means (u1,...,uk) are randomly initialised. Then the K-means algorithm alternates two steps:
Find for each descriptor d; the index 7(d,)of its closest mean:
a(d;) = argmin ||d; — p, |2
k=1,...K

Recompute each mean px from the descriptor assigned to it:
1, = average{d, : nn(d,) = k}

Once the means are trained, new descriptors d are quantised by mapping them to the closest mean:

7(d) = argmin [|d — g ||
k=1,....K

K-means example

Clustering a 2D dataset

Visual word examples. Each row is an
equivalence class of patches mapped to the
same cluster by K-means.

BRE .

7l
|

NS
3

From local features to visual words 53

Two steps:
Extraction. Extract local features and compute corresponding descriptors as before.

Quantisation. Then map the descriptors to the K-means cluster centres to obtain the corresponding visual
words.

Histogram of visual words 54

A simple but efficient global image descriptor

The histogram of visual words is the vector of the
number of occurrences of the K visual words in the
image:

000 o
= 11d; : n(d) = k} |
If there are K visual words then h € R

The vector h is a global image descriptor.

Histogram of visual words 55
A simple but efficient global image descriptor
This is also called a bag of visual words because it does not

remember the relative positions of the features, just the
number of occurrences.

Hence, h discards spatial information.

Pros: more invariant to viewpoint changes and other
nuisance factors.

Cons: less discriminative.

Comparing histograms 56

Cosine similarity

F(I,, 1) = cos 0 = (h,, h,)

. h
h, =
(LA
. h
hy=—2
I |

Histogram of visual words can be compared as vectors.
The relative distribution of visual words is more informative than their absolute number of occurrences.

This intuition is captured by the cosine similarity, which computes the angle of the L2-normalised histograms.

Image similarity (l11)

By comparing bag-of-words descriptors

F1,,L) = (h;, h,)

Search as sparse matrix multiplication

Goal: given a query vector h, quickly compute its similarity with all the L vectors
hi, hz, hs, ..., hrin the database (one per indexed image).

Express this as a vector-matrix multiplication:
“hi h: hg

I:o 0102 0 .. O 0.1:| X[o o o
e & o [J [0 01 0
02 0 0
01 0 03
The naive multiplication cost is
O(K L), where K is the number of visual words and L is the
database size. 0 0 o1
However, histograms are often highly sparse. If only a fraction
p « 1 of entries is non-zero, then the cost reduces to O(p K L)
0.01 0.1 0
or even O(p2 K L). L

The space required i is also only O(p K L).

0.1

0.2

Summary: image indexing and retrieval

Given a query image |, we search the database by combining the two similarities:

1. The fast but unreliable cosine similarity to obtain a short list of M = 100 possible
matches.

2. The slow but reliable geometric verification to rerank the top M matches.

all images 1 top M 1 top 1
cosine LA geometric
similarity ﬂ_ verification

m \‘ A’dm
@7

d iz ﬂ
M, o
o3 ..s f,‘

Demo

http://www.robots.ox.ac.uk/~vgg/demo/

: |

Text Search

Examining result for oxc1_hertford_000011 to oxc1_oxford_001612

WARNING: If using query expansion,

Evaluating of a retrieval system 62

We now have a system that can match a given
picture to a large database of images (e.g.
Wikipedia).

Besides speed, a good retrieval system must
have two fundamental properties:

1. Precision, i.e. the ability to return only images
that match the query.

2. Recall, i.e. the ability to return all the images

Evaluating retrieval systems that match the query.

Precision-recall curves 63 Evaluating an image retrieval system 64

Assess the quality of a ranked result list

Abenchmark usually has 1) a large image database and 2) a number of test queries for which the correct
answer (relevant/irrelevant images) is known.

The retrieval system is evaluated in term of mean average precision (mAP), which is the mean AP of the test

queries.
decreasing score - query retrieval results AP

precision-recall

100% Consider all images up to rank rin the list: 35%
Precision @r: fraction of correct results in the top
r.
c Recall @r: fraction of relevant database images 100%
:§ that are contained in the top r. °
I
o
The Average-Precision (AP) is (roughly) the area
under the PR curve. 75%
AP is a single number summarising the overall quality

129% 37% 100% of the result list.
25% recall

mean average precision (mAP) 53%

Example benchmark: Oxford 5K

http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/

Query Retrieved Images

Dataset content
~ 5K images of Oxford
An optional additional set of confounder (irrelevant) images
58 test queries

Linear predictors

bicycle?

We would like to build a predictor
that can tell if an image X contains a
certain object (say a “bicycle”).

C18 Machine Vision and Robotics
Computer Vision

Lecture 2: Convolutional neural networks

Dr Andrea Vedaldi
4 lectures, Hilary Term

For lecture notes, tutorial sheets, and updates see
http://www.robots.ox.ac.uk/~vedaldi/teach.html

Data representations

We learn this function from example
images that do and do not contain the
object.

In the simplest case, the function is a
linear predictor F(X):
Images are interpreted as (high-
dimensional) vectors.
F(x) dots x and a parameter
vector w to obtain the score for
the positive hypothesis (bicycle).
The sign of F(X) is used as
prediction.

linear predictor

F(x) = (W, x)

Linear predictors beyond vector inputs

Beyond vector data

A linear predictor applies to vector data. representation

. . X @(x) € R?
However, we want to process images, text, videos, or
sounds that are not necessarily vectors.
For this, we use a representation function ©, which
maps data to vectors. possibly not a vector A vector

Non-linear classification

linear predictor non-linear predictor

Representations are used even if the data X is already

a vector.

Fx) = (w.x) Fx) = (w, (x))

They result in a non-linear classifier function which can
be significantly more expressive than a linear one.

A representation should help
the linear classifier to perform
discrimination.

The goal is to map the
semantic similarity between
data points to a corresponding
vector similarity.

A good representation is:
= invariant to nuisance
factors
= sensitive to semantic
factors

Meaningful representations

Semantic similarity

congruous
pair

incongruous
pair

representation
Vector similarity
(distance)

embedding space R?

@(x)

O.near
D(y) 8. far

o) /

The perceptron

Learning via SGD

Convolutional networks

Evaluation

The perceptron

Learning via SGD

Convolutional networks

Evaluation

What

An early neural network by Rosenblatt (1957)

The perceptron maps an input vector
X to a probability value y.

For example, y could be the probability
that X is an image of a “bicycle” rather

than not.

How

The perceptron computes this
probability by weighing the vector
components, summing them, and then
applying a non-linear sigmoid
activation function.

The perceptron

input

X2

XD
weighing

f(x; w; b) y=Plc=1|x,w)
prediction
w,b
parameters
Z H S }—‘O y=Pl=1|x,w)
summation sigmoid

activation

The sigmoid activation function 73

Makes the perceptron non-linear

The perceptron as a parametric function 74

Perceptron = linear classifier + sigmoid

Regard the perceptron as a parametric function from
an input space X to an output space Y:

data perceptron labels

Xy =5 ((wx) +)

The parameters (W, b) of the perceptron are learned
empirically by fitting the function to example data
(X1, ¥1)s (X2, ¥2), - (X Y5 -

This can be done by solving a least-square problem:

1 N
Ew.b) =~ D (5w x) +b) - y,)*

i=1

This problem is non-linear due to the activation
function S. It needs to be solved by an iterative
method such as gradient descent.

The activation function in the perceptron is Sigmoid function The perceptron is a function f(x; W; b) bigs
a sigmoid 1 parametrized by a weight vector w and a bias b. e
w
X !
The function:
_ ; X2 2 Z N y
S(z) = = 075 1. Maps a vector X to a scalar score using the g
I+e linear function (X, w) + b. o
2. Transforms the score into a probability b
The sigmoid converts real scores 7 in the T o5 value by applying the sigmoid function
range (— o0, 00) into probability values in @ - S(2).
the range (0, 1).
ge (0. 1) There usually is a constant bias term b added to fix;w,b) =S ((W,x) +b)
It has several remarkable properties, such 0.25 tEe score. This canhbe implementled by extencliing 1
as the following identity for its derivative the input vector with a constant element equal to = _ _ _
’ Y 1 and including » in w. 1 +exp(-wix; — ... = wpxp = b)
das
— =5@)(1 - S8(2)) = $(2)S(-2) 0
dz -6 45 3 15 0 15 3 45 6
z
Training the perceptron: least square Cross-entropy loss 76

Better than least square for classification problems

Given the probabilistic nature of the perceptron
output, usually the fitting criterion is not least square,
but maximum log-likelihood.

The log-likelihood is computed as follows:

The posterior probability of the 0/1 label y; can
be expressed as

P(y; x5 W) = f(x; WY1 = fx;)™
The negative log-likelihood of the parameters is

—log P(y;|x; W)

The empirical negative log-likelihood is obtained by
averaging the negative log-likelihood over all the
training data points

N
E(w)=— % Z y;log f(x;; w) + (1 — y)log(1 — f(x;; W))

i=1

Just like the squared objective of least square, this
objective function can be minimised by using an
iterative method such as gradient descent.

= —y;log f(x;; w) — (1 — yplog(1 — f(x;; W))

Multi-class perceptron 77 Softmax = sigmoid for 2 classes 78
Softmax layer
In the binary case, the softmax is the same as the sigmoid
Multiple perceptrons can be ;
1 Q x? o Xiz =Py =1|x;w,b) combined to predict more O x; =Py =1|x,w,b)
than two classes.
Each percegtron computes
2 the score x; for a class
e o=
P= hypothesis ¢ = 1,..., C. O =P(y=2|x,w,b)
g b2 b 2
e'i + e%2)
The vector of scores X~ is —
Shownlor2oasses mapped o a vector of
probabilities x° using the
2 3_ _ . softmax operator, which is
1 Ox Oxn=Py=2xxwb) generalisation of the P € - = L . S(w,x) +b)
sigmoid. 'elted eitet lte
Multi-class perceptron 79 Multi-layer perceptron (MLP) 80
Learning from example data Deep architectures
input
The log-likelihood and objective function for a multi class perceptron are given by: neuron 1 (1 of layer 1)
ew;x+h).i C _— neuron 2 (2 of layer 1)
= — — T W, X+
10g P(y =i | X W)=- lOg C eng'_bq - W,sz - b)‘i + 1Og Z e neuron 3 (1 of layer 2)
g=1 q=1

& G
EW) = = 2 —w;xi — b, +log Z eVixitly
gq=1

i=1

This loss function is sometimes called cross-entropy. It measures the discrepancy between
the empirical posterior distributions Q(c | x;) = &(¢ — y;)and
the predicted posterior distributions P(c|x;) = P(y = c|x;, W).

Perceptrons can also be chained, resoling in a so-called deep neural network. Depth refers to the fact that the
function decomposes as a long (“deep”) chain of simpler perception-like functions.

The discovery of oriented cells in the visual cortex

Hubel and Wiesel 1959
rom i !
In 1959, Hubel & Wiesel Recording electrode — |
conducted seminal experiments _— Visual area
on the visual cortex of mammals
(Nobel Prize in Physiology and
Medicine in 1981).

Stimulus "

They discovered the existence of
neurons that respond to specific gﬁﬂllﬂ"lﬂ!!ﬂ'iﬂ

: . Lo VS [VAN NS
orientations and locations in the M0
retina.

These neurons form a local and
(statistically) translation invariant
image operator.

Y]
NERARS =
I e N

e

oriented
filter

Tensors

Variables in CNNs are usually tensors, i.e. multi-
dimensional array.

Conventionally, the dimensions are
NXCxU;X...xUpwhere

N is the batch size, i.e. the number of data
samples represented by the tensor.

C'is the number of channels.
U, X ... X Upare the spatial dimensions.

The number of spatial dimensions D can vary. E.g.: height H
D = 2 is used to represent 2D data such as (or U))
images.

D = 3 is used to represent 3D data such as
volumes.

In general, it is possible to assign any meaning to the
dimensions (e.g. time), as required by the application.

samples N

—
channels C

width W

(or Uy)

and the filter parameters.

Locality: the operator looks at a small window
of data.

Translation invariance: all windows are
processed using the same filter weights.

T

and the filter parameters.

Locality: the operator looks at a small window
of data.

Translation invariance: all windows are
processed using the same filter weights.

The filter has one channel for each input tensor
channel.

>0

Example: images as tensors Tensor indexing 86
Tensor elements x,, ., are identified via indexes, one for
each dimension: —_—
n is the sample index in the batch | |
c is the feature channel index
u]
u is the spatial index y 5
height The spatial index u is in fact a multi-index, a shorthand =T
(or Uy) notation for u = (uy, ..., up).
u
Indexes are 0-based:
A color image can be interpreted as a tensor with C = 3 (colour) channels 0<n<N o
channels, one for each of the R, G, and B colour components. I " i c=3 0<c<C Kneu
widt
< =
More in general, any C X H X W tensor can be interpreted as a (or Uy) 0su<U=(U....Up)
H x W fleld of C-dimensional feature vectors. Generally, whenever you see a spatial multi-index, just
: . . pretend there is only one spatial dimension (D = 1). The
The meaning of the feature channels is often not obvious. extension to D > 1 is almost always trivial.
Linear convolution 87 Linear convolution 88
A simple filtering operation Multiple input channels
Alinear filter f computes the weighted summation Alinear filter f computes the weighted summation
of a window of the input tensor X. of a window of the input tensor X.
Key properties: Key properties:
Linearity: the operation is linear in the input f Linearity: the operation is linear in the input

Linear convolution 89 Linear convolution 90
Multiple output channels and filter banks As a neural network operator
Alinear filter f computes the weighted summation 7 A convolutional layer is an operator that takes an input a
of a window of the input tensor X. f, tensor X a filter bank f and a bias vector b and produces as
AN output a new tensory. X— >X< Y
Key properties:
y p. P Z O Dimensions:
Linearity: the operation is linear in the input . . .
and the filter parameters. The batch size N is the same for input and output.
Locality: the operator looks at a small window f, Input and filters have the same nu.mber of channels C. input £b output
of data. The number of output channels K is the same as the
Translation invariance: all windows are QR number of filters in the bank. %@
processed using the same filter weights. d Z e The output dimension O is given by
The filter has one channel for each input tensor NxCxI KXCXF NXKxXO
channel. X y O=I-F+1
A bank of filters is used to generated multiple C=1F-1
output channels, one per filter. Recall that O = (0,,0,), F = (F|,F,),and [= (1,,1,) as Yukv = b+ Z kacu *Xncvtu
we are using the multi-index shorthand. c=0 u=0
Linear convolution 91 Activation functions 92
Padding and downsampling The non-linearity in deep networks
.] i) Activation functions are scalar non-linear functions S(z)
Padding extends a tensor x with a border P filled with that are applied element-wise to an input tensor x to
zeros. 3 _.i generate an output tensor y (with the same dimensions). X——— S Y
Downsampling retain one every S pixels in a tensor, psl E 5 input output
where S is called the stride. T
X f.b
Y 1.225 g Q
. . . e . . yncu = S(xncu)
Padding and downsampling can be interpreted as additional layers before and after standard convolution: 0.45 v NxCxI NXCXI
-0.325
padding down- 2= max{0, z}. rectified linear unit (ReLU),
P %k sampling _ . ¢
S 11 z =1log(l + €%, soft ReLU,
My -3 -15 0 1.5 3 z=ez+ (1 —e)max{0, z}, leaky RelLU,
) — ——1 ; f
X X Sigmoid Tanh -~ ReLU e=(+e™7, sigmoid,
— Leaky ReLU — Soft ReLU z = tanh(2), hyperbolic tangent,

f.b

Max-pooling is often used, in
combination with downsampling, to

~ AlexNet contains 8 blocks, each formed by:

Pooling 93 CNN layers summary 94
Parameter-less non-linear filters . i) i
input output expression dimensions
The max pooling operator is similar to linear filter,
operating transitively on F' = (F, F,) sized windows.
The operator extracts the maximum response for NxXCxI NXKXO il il
each channel and window
filters X—> * a——") Ynkv = bk + Z kacu * Xnevtu O=I-F+1
=0 u=0
i Lo
Yoy = Max Xx, L%
neyv 0<u<F n,c,v+u
KXCXF
Pooling can use other operators, for example x— RelU [——y Ynew = Max{0, x,, } kK=¢C 0=1I
average
1
yncv = F F 2 xn,c,v+u
12 0<u<F X y X ——————>] max >y Yney = Max xnc,v+u O=I-F+1
< F 0<u<F
Deep convolutional neural networks 95 AlexNet: a CNN for image classification 96
A long sequence of layers KA KA %;‘6 %+"r° K3 K o
@ v N oy © + +
3 X 244 x 244 ot rﬁﬁ @w & & @%b @q@ 1000 x 1 x 1
A deep convolutional neural - |
Ir;etev::rk is a chain of several L f L . L f _»vector of C
vers: ! k 2 ¢ * ° ° 7 8 scores
The typical pattern is to alternate i
linear convolution and non-linear
activation, usually ReLU. K filters number 96 256 384 384 256 4096 4096 4096
F filter size 11 5 3 3 3 6 1 1
The other typical pattern is to S filter stride 4 1 1 1 1 1 1 1
gradually reduce the spatial downsampling P filter padding 0 2 1 1 1 0 0 0
resolution (via downsampling) and F'pooling size 3 3 3
increase the number of feature §’pooling stride 2 2 2
channels. @ P’ pooling padding 1 0 0

reduce resolution further.

more channels

Alinear convolution operator (with padding/downsampling)

max
X —>| P>X<S — RelLU | Frs X
T A RelLU operator (except for fg)
f.b;

An optional max pooling operator (with padding/downsamplin

The outputis a 1000 x 1 x 1 tensor.

class scores

Each entry represents the score for

AlexNet: a CNN for image classification

vector of C
L

class probabilities

1000 x 1 x 1

scores

The perceptron

Convolutional networks

g . . X— Softmax Yy
the hypothesis that the image contains
one out of a 1000 possible classes . . 9
(defined in ImageNet). Learning via SGD Evaluation
Class scores are converted into e
probabilities by using the softmax Ye = e =
layer (multi-class generalization of the k=0
sigmoid)
Learning a CNN Learning a CNN 100
class ImageNet benchmark data
1
vy
. A CNN classifiers has millions of parameters.
image X; “ fiop Js | loss (mE{W) error Hence, learning requires massive amounts
of data.
T T T ImageNet is a large collection of labelled
W, W, W W, Wy W W, Wy i image.
(. J

~—
parameters w

Given a dataset (X;,¥;), (X5,), ...(Xp» Yy) the total
error is obtained by averaging the cross-entropy loss.

The goal is to optimize this energy over the model
parameters w.

1 N
E(W) =~ ; E(wW), E(W) =0y, ®(x))

w* = argmin E(w)

w

© . IMAGENET

The standard subset (ILSVRC12) contains
1,000 object classes
~1,000 example images for each class
1.2M training images in total

Without ImageNet (or a similar dataset) it
would have been impossible to develop
modern deep neural networks for computer
vision.

Learning a CNN

ImageNet benchmark data

Learning a CNN

Further details and practical notes

Epochs & mini-batches

In practice, the data is visited not randomly, but in
random order (without repetitions). A full pass is
called an epoch.

Gradients are estimated by averaging mini-batches

of 10-1000 examples. This takes advantage of
parallel hardware such as GPUs.

Annealing schedule

The learning rate 7, is gradually reduced over time,

usually by a factor 10 when no progress is observed.

This allows SGD to slow down and more accurately
land on an optimum as the latter is approached.

Time required

On a fast GPU, it is possible to process ~1k images
per second for AlexNet.

An epoch thus lasts for 20 minutes. 40-100 epochs
are required, requiring 13-33 hours (faster training
requires tricks such as batch normalization).

On a CPU, this could be 100 x slower (four months).

Some networks are much slower (10 - 50 x).

The objective function is an average over N = 1.2M

data points, and so is the gradient. The cost of a single

gradient descent update is way too large to be
practical.

Stochastic gradient

Approximate the gradient by sampling a single data
point (or a small batch of size N’ << N). Perform the
gradient update using the approximation.

Momentum

SGD can be accelerated by denoising the gradient
estimate using a moving average. This average is
called momentum.

Stochastic gradient descent

1 & 1Y
Ew)=—Y EW) = VEw-= 5 > VE(w)

N

i=1 i=1

Wi = W, — 1, VE(W), i~U({1.2,..,N})

uniform distribution

m,; =0.9m,+ 5, VE(W,), W, =W,—m,,

The perceptron

Learning via SGD

Convolutional networks

Evaluation

102

Evaluating deep networks

General approach

Evaluation is similar to any other machine learning
method, such as SVMs or the perceptron.

Evaluation must always be done on a held-out
validation or test set. This is because we need to
test generalization, not just model fitting.

;Z

E(®) =
| D validation | (%3)ED atigation

err(P(x), y)

Most benchmarks provide validation data for this
purpose.

Evaluation can use the same loss used for training.
However, it is not uncommon to evaluate with respect
to other, more meaningful losses err as well.

Top-k error

For classification problems, there are two popular
losses.

Classification error: the percentage of incorrectly
classified images in the validation set.

Top-k error: the percentage of images whose ground
truth class is not contained in the top-k more likely
classes according to the model.

The top-k error requires the network to estimate
confidences. Top-1 is the same as the classification
error.

C18 Machine Vision and Robotics
Computer Vision

Lecture 3: Backpropagation and automatic differentiation

Dr Andrea Vedaldi
4 lectures, Hilary Term

For lecture notes, tutorial sheets, and updates see
http://www.robots.ox.ac.uk/~vedaldi/teach.html

The need for gradients Backpropagation
class y, bike An efficient algorithm to compute the gradients
L
v class y;
image X; c P P C3 P cy P Cs ¢ Pl f P fyg | loss PE(W) error
A
T T T T T T image X; c3 P ey P Cs 6 P fiomok loss > E(W)
W, W, W3 W, W5 We W, Wg T T T
parameters w W3 W, Ws W W, Wy
In order to train a neural network we minimise the forward l i l l l l l l
average prediction error X > R
argmin E(w, ..., Wg) VE = _dE . ooo, _dE backward
Wi, Wg dWl de
In order to do so, we require the gradients of the d_E d_E d_E d_E d_E d_E d_E d_E
error with respect to all parameters dwy dwy dwy dwy dws dwg dw, dwy

Chain rule: scalar version 109

Chain rule (scalar version) 110
Xo X Xn—1 Xn Xn Xn—1 X X0
o= h PO fh P fis PO i PO O fi [0 fir we— h O fi O
A composition of n functions
Xn = (fn j;l—l ° f2 ° fi) (XO)
dx, df, - ah df,
E T X
The derivative is obtained by using the chain rule
The vec operator m Derivative of tensor-valued functions 112
Reshaping tensors into vectors
We use the vec operator to reduce a tensor
derivative to a Jacobian matrix:
The vec operator rearranges the elements of a tensor vectorised
as a column vector, unrolling the tensor dimensions. «— f ‘_ﬂ 1. vec converts the tensor function y = f(x) to vecy <« vecf [«— vecx tensor
a vector function vecy = (vec f)(vec x). function
The order of unrolling is not essential, but a consistent \ /7
convention must be used. PyTorch uses the row major t 2. The derivative of a vector function is its
convention: ensors Jacobian matrix.
3. The Jacobian matrix contains the derivative of
Yoo each element of the output vector vec y with T
; Ly 1
vee |200 Jorf _ {Yor respect to each element of the input vector veex
Yio Y Yo Vec X.
Y1
A ’ dvec Jacobian
By reshaping tensors in this manner, veey vecf veex vecy f matrix
a tensor layer y = f(x) can be thought of as dvecx

a vector layer vec y = f(vec x).

vectors

Chain rule (tensor version) 13 The (unbearable) size of tensor derivatives 114
Using vec and matrix notation
X, X1 X X vecy <« vecf |&e— vec x
O— f, €O fi_| €<« f, <O~ f; <O
dvecf, dvecf,_, dvecf, dvecf
X X eee X X
dvecx,_; dvecx,_, dvecx; dvecx, The size of these Jacobian matrices is huge. Example:
T "
275 B elements 32 x 32 x 512
vecy dvecf
dvecx, dvecx 1 TB of memory Q
dvecx, required !!
' 32 x 32 x 512
Unless the output is a scalar 115 Backpropagation 116
Assume that x, is a scalar
Scalar > «— [[vecx X, X, 1 X X,
This is always the case Oe— f le—Oe—| f e e— fl e—O—| fl e—O
if the last layer n n
is the loss function
dvecf, dvecf,_, dvecf, dvecf;
Now the Jacobian reduces to a gradient and has the same size as X. Example: dvecx,_, X vee X, X X dvecx, X Tvec Xo
vec X-r L 1
Pn-1
7
524K elements 32 x 32 x 512 A A
/ compute this first |
yE—E . Just 2MB of 11?)(1 \
dvecf memory
small too large

dvecx

Backpropagation 17 Backpropagation 118
Assume that x,, is a scalar Assume that x, is a scalar
X1 X Xo Xn X1 X Xo
f €04 fi. &= e— fi <0 fi <O O— f, €0 fio) &=e— fi &O— fi €O
dvec(f,_y°f) y dvecf, dvecf dvecf,o-of; dvecf;
dvecx,_, dvecx dvecx, dvecx, dvecx
C 1 C 1
Pn2 P
A A
A\ / A
small too large small too large
Backpropagation 119 Vector-Jacobian product fBP 120
Assume that x,, is a scalar
The key step is the calculation of the rest of network
vector-Jacobian product z y X
n—1 X Xo O 8 «O< f &0
fo €O fiu e/ i <O i <O B dvecf
p'=f (p’X)_p.dveCX dvecg dvecf
dvecf, o of, dvecy dvecx
dvecx - . ’
The result p’is a vector that has the same size t ! =p
c] as X, so not too large. p
l,){’ The Jacobian matrix is still too large to explicitly -
compute. -
The key idea is to use layer-specific i ?
L . P . . H
optimisation to computefB without computing P dvecf
the Jacobian matrix explicitly. : O—— /8% | »0p'=p- Teox
vec X

small

An example of fBF 121 fBPas a reversed layer 122
Sigmoid layer
Assume that X is a vector (otherwise use vec). Most derivatives are equal to zero: ; o
orwar
Let y = f(x) be the sigmoid activation layer: do(x)) _ {5(Xc)a c=k, 600) = ﬁ(x) <
d 0, k. dx -
o) K s * The function fis a forward layer y = f(x). y=fx) O« f <_QE
The Jacobian is the diagonal matrix
Ax) = o(x,) o(x) = * 9 The functionfBPdefines a backward layer operating in
I T et e 6) 0 ... 0 the reverse direction p’ = f2P(p; x). X ?" """"""""
d) 0 5 0
o(xc) d_f = G(fz)) : This generates a new mirror block diagram; the forward dvecf
X . o diagram feeds into the backward diagram via X. P O fBP —O p'=p-
The Jacobian is then given by: 00 ... 6(x) dvecx
d';\:‘) 11::’(‘\‘.» d;(‘\(n fBPiS then given by backward
df ﬂ dﬂ(\;) dolx;)
ax A e BP, df . . .
.m‘u mrx.\)) urr[x) f (p’ X) P E = [plo-(XI) pza(XZ) ' pCH(XC)] ‘
fBP computes gradients 123 Compute graphs 124
Keeping track of calculations for automatic differentiation
So what are these vectors p anyways? rest of the network
b4 X
Each p is the gradient of the network output z with O g y f .
respect to the corresponding variable x: H:eecr?:r:ri]s?#ttﬁ E:a?)t;rlscak of the X, X,_| X, X,
calculations in a program. - I fmr 1 5 h
’ Z . ’ |
p' = d_ orevenjust p’=dx It can be used to automatically
X dz -1 dz dz deduce which computations are
dz P x required to compute the
BP) . BP y BP gradients.
Thus f©" computes a gradient out of another gradient: O—>| g —>O— f —0 d
: i X, dx dx dx,
These computations can then be n BP n-11 5p BP ! BP 0
p:ﬂ = p’:fBP(p;X)zﬂ added to the graph and the o= fu 0= [,op P)y >O— fi7 =0
dy dx p p process repeated to obtain

higher-order derivatives.

Compute graphs 125 Backpropagation network 126

Keeping track of calculations for automatic differentiation Conv, ReLU, MP and their transposed blocks
forward
The compute graphis a forward »
mechanism to keep track of the 3 d
calculations in a program.
X X, X, X Xy X X; X3
i 0 n- n conv RelU > MP
It can be us_ed to automgtlcally fi H P— fi f, 0O
deduce which computations are
required to compute the
gradients.
These computations can then be
added to the graph and the
process repeated to obtain dx, dx, dx,_, dx dx, . dx, dx, dx;
. 3 S n— n O<€— convBP [€e—O<— ReLUBP [€—(O€— MPBP [¢—€—:--
higher-order derivatives. O< 1BP le—Oe szP e— ... < r?—Pl —O< anP «—O
The graph is more commonly P
shown the other way around, with 4 «
the forward direction left to right. backward
backward

Sufficient statistics and bottlenecks 1 Automatic differentiation (AutoDiff)

Sometimes much less information is needed A PyTorch example
forward Modern machine learning toolboxes provide AutoDiff. import torch
;‘ # Define two random inputs, both requiring grads

This means that calculations can be performed as x0 = torch.randn(1,3,20,20, requires_grad=True)
x1 = torch.randn(1,10,18,18, requires_grad=True)

normal in a programming language.

XCO 3 Xl X2 X3 Prog ’ 94e9 # Get a convolutional layer. It contains

H conv RelU MP Underneath, the toolbox builds a compute graph # a parameter tensor conv.weight with requires_grad=True

: ’) conv = torch.nn.Conv2d(3,10,3)
Eventually, gradients can be requested. # Intermediate calculations

x2 = conv(x0)

ol on/off pooling f init] x3 = torch.nn.ReLU()(x2) + x1
nothing! mask switches w implicit! x4 = x3.sum() # Scalar!

dWO Xy conv() #4Igvo:§e Ag?())Grad to compute the gradients
x4.backwar
RelLU
dx dx, dx, dx; 0
O<— convBP «—O<— ReLUsP €«—Oe— MP8P [e—O€— -+ X0 X3 plus() ’;r’;gi’(‘;etgﬁagfﬂggg shapes

X ()¢ 4 sum() print(x1l.grad.shape)
d OO print(conv.weight.grad.shape)

4
X

backward dX4

* Unless the gradients w.r.t. the filter parameters are also needed

C18 Machine Vision and Robotics
Computer Vision

Lecture 4: Applications

Dr Andrea Vedaldi
4 lectures, Hilary Term

For lecture notes, tutorial sheets, and updates see
http://www.robots.ox.ac.uk/~vedaldi/teach.html

Face analysis

Detection, verification, recognition, emotion, 3D fitting

different

E.g. VGG-Face

Semantic image segmentation

Label individual pixels

130

Text spotting

Detection, word recognition, character recognition

E.g. SynthText and VGG-Text

http://zeus.robots.ox.ac.uk/textsearch/#/search/

132

Object detection

Extract individual object instances

_ | e

person :0.993

I¢

ierarchi . .
R. Girshick, J. Donahue, T. Darrell, J. Malik, CVPR 2014

Architectures Segmentation

Detection

Tracking

Architectures Segmentation

Detection Tracking

Neural network architectures
Evolution

AlexNet (2012)

e L

.‘J

i

5 convolutional layers

8 Hi 2 2 v 2 2

w

3 fully-connected layers

. E"\fi.*i‘ﬁt&nﬂ i

BRE

Neural network architectures 137 Neural network architectures 138
Evolution Evolution
AlexNet (2012) VGG-M (2013) VGG-VD-16 (2014) AlexNet (2012) VGG-M (2013) VGG-VD-16 (2014) GoogLeNet (2014)
Neural network architectures 139 Neural network architectures 140

AlexNet (2012)

PP ety

Evolution

VGG-M (2013)

VGG-VD-16 (2014)

s ey

P

GooglLeNet (2014)

Evolution

GoogLeNet (2014)
VGG-VD-16 (2014)

VGG-M (2013)

ResNet 50 (2015)
ResNet 152 (2015)

(
(
(
(

AlexNet 2012)—l

16 convolutional layers ——

50 convolutional layers ———>

152 convolutional layers ——

Krizhevsky, |. Sutskever, and G. E. Hinton.
ImageNet classification with deep convolutional
neural networks. In Proc. NIPS, 2012.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S.
Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. Going deeper with
convolutions. In Proc. CVPR, 2015.

K. Simonyan and A. Zisserman. Very deep
convolutional networks for large-scale image
recognition. In Proc. ICLR, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep
residual learning for image recognition. In Proc.
CVPR, 2016.

Accuracy

141

Speed 142
3 X more accurate in 3 years 5 x slower
20.0 26 5.0
L e e 2.3 roreeereecnennnnes < 44
§ 38
X e weesensanneanees I £ .
o) E
5 125 € 16 5 5 O
o w
B 100 freseeessereeeasenes § 13 g gl K 2 25
§ 7B §1.o —————— g T
5O 4o B 0.7 4 5 13
3
2
25 Jeeceeeemsenseneeninnanes weesensanneanees 0.3 Jrereeemrarseeenninnanes 2 0.6
0.0 0.0 0 0.0
A O A0 2O a® W0 A O A0 2O ad W0 3 0 A0 O O 2O S O A0 O 4O 0O
LG KT @ A @ o T g AT 7 8 o P AN T 8 o P
5 12 g A N N W@ g O N A€ (& (G0 A N 5 SO PR
v @ v @
[¥ @ @ & ¥ g @ @ LI gy LI Ay
" & & " & & Tt & & T & &
Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers
Reason: far fewer feature channels (quadratic speed/space gain)
Moral: optimize your architecture
Model size
Num. of parameters is about the same
500
438
g Segmentation
S 313 .
5
& 250 ::’
T 188
o
€ 125
63
[
oot & @ A ® 0O 0O eh ot & @ A d 0O @O
\\e"" RS e‘\e\’é bg,e‘?'\;,vé :\g’\b :\‘ﬂ'b .{\e"’ RS B‘\e\’e> ég,e?'\ke‘d :\g’\'é',\vﬂfb
P P o & & ¥ W8 & &
< @QA @ @%‘\ @é\ &) @Q’Q @ \05‘\ @""\

Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers
Reason: far fewer feature channels (quadratic speed/space gain)

Moral: optimize your architecture

Detection

Semantic image segmentation

Label individual pixels

fence

ound
B grass

input = image

convolutional fully-connected

output = image

Receptive field 146

The part of the image looked at by a neuron

neuron
value

7

Receptive Field (RF) of a neuron
The subset of the image affecting the value of a neuron

Small vs large RFs

Small RF: spatially specific, but can only account for small
visual structures

Large RF: spatially a-specific, but can account for large visual
structure

How to make the RF large
Use large filters
Chain several filters

Interleave downsampling along the chain
E.g. downsampling 2x increases the RF size 2x.

image
neuron
receptive field

Convolutional vs fully connected layers

Comparing the receptive fields

Convolutional layers Fully connected layers

Neurons are spatially selective, can
be used to localize things.

Neurons are global, do not
characterize well position.

Which one is
more useful for
pixel level labelling?

—
—

147

A fully connected layer is just a large filter 148

The filter support fills the entire input tensor

IX1xK

wik

Fully-convolutional neural networks

class predictions ——i

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional models for sesmantic segmentation. In Proc. CVPR, 2015

149

Fully-convolutional neural networks

Dense evaluation
Apply the whole network convolutional

Computes a vector of class probabilities at each
pixel

Downsampling
For efficiency, the input data is substantially down
sampled in the network
The output is fairly low resolution (e.g. 1/32 of
original)

150

Architectures Segmentation

Detection

Tracking

The object detection problem

, . 9

The goal of object detection is to simultaneously classify, enumerate, and localise known object types in an
image.

A key challenge is that the number of object instances is not known a priori.

Detections with CNNs 153
Region-based Convolutional Neural Network (R-CNN)
CNNs compute a fixed number of image features. A new computational mechanism is needed in order to detect a

variable number of objects.

Region-based CNN (R-CNN) use a region proposal algorithm to extract a large number of potential object

regions, and then a CNN to assess each one of them.
= e -
-

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
R. Girshick, J. Donahue, T. Darrell, J. Malik, CVPR 2014

Region proposal algorithm 154

Obtain a shortlist of regions that may contain objects

A region proposal algorithm produces a shortlist of regions that are likely to contain whole objects.

The Selective Search method by [van de Sande, Uijlings et al.]):
Uses hierarchical segmentation based on colour uniformity and image edges.
Produces about ~ 2000 regions / image with a > 95% probability of hitting any relevant object in the image.

From proposals to CNN features

Dilate, crop, reshape

Propose

Crop & scale
Anisotropic
227 x 227

A region proposal is slightly dilated to capture some visual context and then cropped and resized in order to be
passed to a CNN.

From proposals to CNN features 156

Evaluate CNN

Dilate Scale CNN features Feature vector
Anisotropic Up to FC-7 4096 D
227 x 227 AlexNet

The cropped and resize region is passed through a CNN to extract a corresponding feature vector (or image
representation).

Classification of a region 157 Region adjustment 158
Run an SVM or similar on top Bounding-box regression
aeroplane
cat
dog
- C1 cz H regress
person
Scale CNN features Feature vector Label Scale CNN features Feature vector Box adjustment
Anisotropic Up to FC-7 4096 D One out of N Anisotropic Up to FC-7 4096 D dx1, dx2, dy1, dy2
227 x 227 AlexNet 227 x 227 AlexNet
The feature vector is then classified by means of a linear predictor (or a multi-layer perceptron). There are C + 1 A second linear regression is used to refine the bounding box location. In the example, the person’s legs were
possible object types, including “no object” (background). not included in the proposal, but regression can fix this mistake.
Positive and negative training regions 159 R-CNN results on PASCAL VOC 160

Based on overlap with ground truth bounding box

the ground-truth
region

a negative

a positive training region

training region

overlap > 70% overlap < 30%

Ren, He, Girshick, & Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NeurlPS 2015

At the time of introduction (2013)

Despite its conceptual simplicity, at the time of introduction R-CNN was substantially better than all existing
methods.
This is due to the power of the CNN classifier.

Importantly, the CNN is pre-trained on the ImageNet data (1M images) for classification (using only image-level
labels), then fine-tuned on PASCAL VOC data (5K images) for object detection (using region-level labels).

R-CNN (Tol Net) + bbox regres: 58.5% 53.7%
62.1%

R-CNNs as a complex CNN 161 Accelerating R-CNN 162

Integrate more of the blocks as CNN components

Region CNN CNN
proposals features classifier
o Only the fully-connected layers are evaluated
for each region.
CNN
regressor crop How: spatial pooling layer.
A Ll
By integrating all blocks in a end-to-end trainable CNN
By accelerating region-specific computations

By replacing region proposal generation with something better L

Problem: The fundamental bottleneck is
evaluating the CNN from scratch for each
image region.

Solution: compute all the convolutional
features just once, and then crop directly the
resulting feature map.

R-CNN can be improved substantially in three ways:

The Spatial Pooling (SP) layer The Spatial Pooling (SP) layer 164
As a building block

feature
vector

any given region

The SP layer extracts a feature

@] vector for each of the R regions. ez
maxpooling ® The output are thus R tensor of size feature — sp |— R region-specific
® 1x1xC. map feature vectors

Alternatively, this can be seen as a
single 1 x 1 x C x Rtensor.

o list of
R regions

The spatial pooling layer (SP) max-pools the convolutional feature responses in a given region.

This can be used to extract many region-specific feature vectors by reusing the same convolutional features.

He, Zhang,Ren & Sun, “Spatial Pyramid Pooling (SPP) in Deep Convolutional Networks for Visual Recognition”, ECCV 2014 He, Zhang,Ren & Sun, “Spatial Pyramid Pooling (SPP) in Deep Convolutional Networks for Visual Recognition”, ECCV 2014

The Spatial Pyramid Pooling Layer 165 Fast R-CNN 166
SP with multiple subdivisions Summary parambters
chair
|| box refinement
N
m background
>
selective
i search box refinement
- potted plant
SPP is similar to SP, but pools features in the tiles of a grid-like subdivision of the region.
The resulting feature vector captures the spatial layout of the original region. Ross Girshick. “Fast R-CNN”. ICCV 2015 box refinement
167 168

Fast and Faster R-CNN performance

Both faster and better!

Detection mAP on PASCAL VOC 2007, with VGG-16 pre-trained on ImageNet.

~50s 66.0
Fast R-CNN ~28 66.9

Faster R-CNN 198ms 69.9

Bikes

detect & track

Track pre-programmed objects (e.g. faces) fully automatically (no manual selection required)

169

PASCAL VOC Leaderboards
Detection challenge (comp4: train on own data)

http://tinyurl.com/h7uzkov

67.5

225

o

(0000+00N) 19NSaH ‘NNOH Joised
061eNVAd

(0000+00N) 1eNseY ‘NO4-H
0D00+00A '9HODA ‘NOHI+INIHO
0000+21++20 919D Z150SS
0000+21++20 9LDOA 0080SS
9LDOA WaH

21420 el

NOI

U0 1NVAd

oulesEa ONIW

(0000+00N) oulesEa NNO Jeise
2H++20 91DDA 21SASS

100

o NNOBH ..

VAVO 3HOW NNO™SNNO HW
TL++20 91DDA 00£0SS

DO IONIRAAH

ds 1eNsedAH

NNO™S™NNO B

OTOA + NNO-H Ise4

Ndd

0000 F1ENISNT d33a

9LDDA ‘NOHA+WIHO

sdeyy ainiee [BUOINIOAUOD U SHIOMBN

9LOON NNO-H isey
Wdsagbes

10NH1S™894 HOINN

00029 NIN“SNN

(621 x0q0) NNO-H
NINSON
NNO-H

0704

up3 oineay

(621 x009) NNO-
sas

NNO-H

2016

4 x improvement in accuracy

2014

Tracking 1/2: select & track

Draw a bounding box first, then track it automatically

Select & track
Open-ended tracking
Problem: Track an arbitrary object with the sole input of a single bounding box in the first frame of the video

Challenge: The tracker must be object-agnostic and learn what we mean from a single example

Tracking flavours

Detect & track
Restricted to the object the program knows, but
fully automatic

Select & track
Open ended, but requires manual input

Track pretty much anything Typical applications: people, faces, cars

Cheap to track something new, but still New objects can be learned,
requires manual input but at a cost

Tracking via iterated detecktion

Learn the object in one frame, seek it in the next

frame t TRAINING frame t+17 TESTING frame t+7 TESTING

Repeat at times t=0,1, 2, 3, ...
At frame t learn a model of the object vs background
Atframe t+1 use the model to find the new object location

How our tracker works Training data

Describe and match ImageNet Video

Descriptor computation image neural . matching
. descriptors
windows net result

Cross-correlation
-

6x6x128

A neural network ¢ maps each

image window to a visual descriptor

Two images of different sizes time t
small: exemplar at time ¢
big: search area at time t + 1

17x17x1
Descriptor matching time t+ 1
Official task is object detection from video - can be easily adapted to arbitrary object tracking

Computes the descriptor similarity at all S 22x22x128
t I t . . X X . .
ranslated sub-windows Almost 4,500 videos and 1,200,000 bounding boxes!

30 classes: mostly animals (~75%) and some vehicles (~25%)

C18 Computer Vision 179

Recap

Prof. Andrea Vedaldi (4 lectures)
Lecture 1: Matching, indexing, and retrieval
Lecture 2: Convolutional neural networks
Lecture 3: Backpropagation and automated differentiation
Lecture 4: Applications

Prof. Victor Prisacariu (4 lectures)
3D vision

