Image representations, from shallow to deep Andrea Vedaldi

BMVC 2014 Tutorial

Demo: image search

http://www.robots.ox.ac.uk/~vgg/research/on-the-fly/

Visual Search	of BBC News
Objects/Scenes Exact Matches	People
search term/image	+ BBC News Search

BBC

BBC Research & Development explains how their work with Oxford University is opening up new ways to search archive footage.¹

Searching by type

Inside Out London

III BBC News at Six

🖽 World News Today

III BBC News at Six

III BBC News

3

Searching by instance

Search by example

5

Searching by identity

Challenges: intra-class variation

Challenges: viewpoint, occlusions, clutter, illumination, ... 8

Challenges: size

BBC Footage Duration	# of Frames	# of Keyframes	Footprint	Faces Detected
3 - 40 K hours	10 - 150 M	3 - 35 M	1 - 10 TB	5 - 20 M

Learn objects, people on the fly

Build models for new queries on the spot

Respond fast

 Search millions of frames in a few seconds

Small footprint

Index millions of frames in RAM

Many other applications

Exemplified applications

- Object category recognition
- Object instance retrieval
- Face detection & recognition

Image representations apply to most areas of CV

- Object detection
- Visual tracking
- 3D reconstruction
- Semantic segmentation
- Pose estimation
- Interactive segmentation
- Material recognition

Image-based object models

object = distribution of 2D patterns

Linear predictor

bicycle?

linear predictor
$$F(\mathbf{x})=\langle \mathbf{w},\mathbf{x}
angle$$

Image representations

Using linear predictors on non-vectorial data

An encoder maps the data into a vectorial representation

Allows linear predictors to be applied to images, text, sound, videos, ...

$$F({f x})=\langle {f w}, \Phi({f x})
angle$$

Meaningful representation

Learning predictors

Support vector machines

A typical predictor

$$E(\mathbf{w}) = \lambda \frac{\|\mathbf{w}\|^2}{2} + \frac{1}{N} \sum_{i=1}^{N} \max\{0, 1 - y_i \langle \mathbf{w}, \mathbf{x}_i \rangle\}$$

The predictor ... is smooth ... and fits the training data

Optimisation

- Very large convex problem
- Key insight: an accurate solution is not required

O(N) algorithms exist

- Stochastic gradient descent, dual coordinate ascent, ...
- Can learn on the fly on thousands or millions of examples

[Learning with Kernels, Schölkopf Smola 2002]

Smoothness and generalisation

Key challenge: extrapolate the training data

- Achieved by smoothness
- I.e. similar vectors receive similar scores

$$(F(\mathbf{x}) - F(\mathbf{y}))^2 = (\langle \mathbf{w}, \Phi(\mathbf{x}) - \Phi(\mathbf{y}) \rangle)^2 \le \|\mathbf{w}\| \cdot \|\Phi(\mathbf{x}) - \Phi(\mathbf{y})\|$$

linear predictor $F(\mathbf{x}) = \langle \mathbf{w}, \Phi(\mathbf{x}) \rangle$

Good representations

Main desiderata

- Powerful: meaningful similarity / untangles factors
- Cheap: fast to evaluate (can be computed on the fly)
- Compact: small code (takes little RAM, disk, IO)

Others

- Easy to learn (when not hand-crafted)
- Easy to implement

Histogram of Oriented Gradients

[Lowe 1999, Dalal & Triggs 2005]

HOG captures the local gradient (edge) orientations in the image

HOG challenge

HOG(**x**)

111-11	tint	SSERESS

HOG⁻¹(**x**)

[Vondrick et al. 2013]

Bag of visual words

[Sivic & Zisserman 2003, Csurka et al. 2004, Nowak et al. 2006]

BoVW construction

- 1. Extract local descriptor densely
- 2. Quantise descriptors
- 3. Form histogram
- 2. Discards spatial information

Quantisation

BoVW intuition

Discarding spatial information gives lots of invariance

Visual words represent "iconic" image fragments

The loss of spatial information

Bag of features representation effectively forgets the relative location of the features

Spatial histograms

[Lazebnik et al. 2006]

Weak geometry: pool spatial information locally

Spatial histograms capture weak geometry

image

plausible deformation

implausible deformation

≠

≠

Summary so far

Advanced encodings

Soft and sparse assignments, e.g.

- ▶ [Philbin et al CVPR 08, Gemert et al ECCV 08]
- Locality-constrained linear coding (LLC) [Wang et al CVPR 10]

Representing SIFT distribution mean in Voronoi cell, e.g.

- Super-Vector Coding [Zhou et al ECCV 10]
- VLAD [Jegou et al CVPR 10]

Representing SIFT distribution mean and covariance in Voronoi cell, e.g.

► Fisher vector [Perronnin et al CVPR 07 & 10, ECCV 10]

Improvements to normalization, PCA, whitening for VLAD/FV

- Chen et al 2011 [Jegou & Chum ECCV 12]
- All about VLAD [Arandjelovic & Zisserman CVPR 13]

Vector of locally aggregated descriptors (VLAD)

31

[Jegou et al. 2010]

Fisher Vector (FV)

[Perronnin et al. ECCV 201, Sharma Hussain Jurie ECCV 2010, Sanchez et al. 2103]

Reference benchmark: PASCAL VOC

Task: decide if an image contains any of twenty object classes

Performance

mean Average Precision (mAP)

50% of object occurrences are recognised reliably

[Everingham et al, 2006-12]

The devil is in the details

A comparison of encodings [Chatfield et. al. BMVC 2011]

mAP (%)

2005—12: an industrial production of encodings [Sivic et al. 03, Csurka et al. 04, Zhou et al. 10, Perronnin et al. 08, Jegou et al. 10, ...]

Our evaluation compared representative ones on an equal footing

The (Improved) Fisher Vectors came out on top [see **Tuesday's talk for a comparison with deep learning**]

Some fundamental ideas

Local and translation invariant operators

gradients, filters, visual words

sparsity, quantisation

Pooling

max, sum, spatial pooling

Kernels

A kernel directly encodes a notion of data similarity

$$K:(\mathsf{x},\mathsf{y})\mapsto \mathbb{R}$$

Similarity and kernels

Recall: the encoder $\phi(I)$ should embody a useful notion of similarity

Similarity can be measured by the inner product or kernel $\left<\varphi(I),\,\varphi(I')\right>$

Normalisation

Extracting the representation $\phi(I)$ induces a notion of "similarity" between images

kernel
$$K(I, I') = \langle \Phi(I), \Phi(I') \rangle$$

A natural property: any object is most similar to itself

```
\forall I, I' : K(I, I') \leq K(I, I)
```

This property is satisfied provided that features are L2 normalised

Kernel predictor

Task: predict the class of a datum x

How: use *K* to compare **x** to all training examples \mathbf{x}_{1} , \mathbf{x}_{2} , ...

$$F(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$$

Non-linear kernels

Linear SVM

fastrestrictive

 $F(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x}
angle$

Non-linear SVM

much slowerpowerful

$$F(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$$

Additive homogeneous kernels

Hellinger

intersection

 $\min\{x, y\}$

Additive kernels example

Bag of Visual Word on PASCAL VOC 07

Burstiness and the square-root map

Burstiness

- ▶ words may occur in **bursts** [Jegou et al. 2009]
- compensate by taking the square root

Effect of square rooting

Extracting the representation $\phi(I)$ induces a notion of "similarity" between images

Non-linear kernels are expensive

Kernel maps

Positive definite kernel = inner product of **feature vectors**

Analytical explicit maps

Empirical maps

- Numerical
- ► **Good**: general, adaptive
- Bad: slow, dataset specific

Analytical maps

- Closed-form
- ► **Good**: fast, dataset agnostic
- Bad: kernel-specific, nonadaptive

linear
$$K(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$$
 $\Phi(\mathbf{x}) = \mathbf{x}$

Hellinger's
$$K(x, y) = \sqrt{xy}$$
 $\Phi(x) = \sqrt{x}$

A few kernels have trivial maps

Which other kernels have analytical maps?

Explicit kernel maps

Kernel maps

- often infinite dimensional
- used implicitly (kernel trick)
- theoretical

 $egin{aligned} & \mathcal{K}(\mathbf{x},\mathbf{y}) = \langle \Psi(\mathbf{x}),\Psi(\mathbf{y})
angle \ & \Psi(\mathbf{x})\in V \end{aligned}$

Explicit kernel maps

- ► finite dimensional <u>approximation</u>
- used explicitly
- practical

$$egin{aligned} & \mathcal{K}(\mathbf{x},\mathbf{y}) pprox \langle \Phi(\mathbf{x}), \Phi(\mathbf{y})
angle \ & \Phi(\mathbf{x}) \in \mathbb{R}^d \end{aligned}$$

Explicit kernel maps

Kernel maps

- often infinite dimensional
- used implicitly (kernel trick)
- theoretical

$$egin{aligned} & \mathsf{K}(\mathbf{x},\mathbf{y}) = \langle \Psi(\mathbf{x}),\Psi(\mathbf{y})
angle \ & \Psi(\mathbf{x})\in V \end{aligned}$$

Explicit kernel maps

- ► finite dimensional <u>approximation</u>
- used explicitly
- practical

$$egin{aligned} & \mathcal{K}(\mathbf{x},\mathbf{y}) pprox \langle \Phi(\mathbf{x}), \Phi(\mathbf{y})
angle \ & \Phi(\mathbf{x}) \in \mathbb{R}^d \end{aligned}$$

Explicit maps are efficient

Much faster evaluation

$$egin{aligned} F(\mathbf{x}) &= \langle \mathbf{w}, \Phi(\mathbf{x})
angle \ O(1) \end{aligned}$$

Much faster learning

Example: Chi² map


```
for i = 1:100
for j = 1:100
K(i,j) = ...
2*x(i)*x(j)/(x(i)+x(j));
end
end
```



```
With the hom. kernel feature map
x = .01:.01:1 ;
psi = vl_homkermap(x,1) ;
K = psi'*psi ;
```

VLFeat Toolbox http://www.vlfeat.org

Example: Chi² map

Caltech-101 category recognition

#1,500

training time 1 h 5 m 4× speedup

DaimlerChrylser pedestrian recognition

#20,000

Trecvid 2009 video indexing

Kernel as representations

From similarity to features

- 1. Start from a concept of similarity
 - homogeneous kernels = good for histograms
 - Gaussian kernels = local similarity

- 2. Capture it in a **positive definite function**
 - infinite dimensional feature map
 - implicit data representation

3. Find finite dimensional approximations

explicit data representation

Kernel methods are very mature

Theory

- reproducing kernel
- regularization theory
- statistical learning theory

Many kernels

- generic: linear, polynomial, Gaussian
- for histograms: homogeneous intersetion, Chi2, sqrt, log, ...
- combinations: exp-chi2, MKL, …

Kernel trick: flexibility

learn with any kernel

Data aware approximations

- (additive) Nystrom
- incomplete Cholesky

Data-agnostic approximations

- random Fourier features
- fast food
- homogeneous kernel map
- intersection kernel map

Algorithms

- power mean for add. kernels
- online-learning with kernels

Learning to compare

For a thorough review: [Weinberger Saul JMLR 2009]

Goal

- compare (rather than classify) objects x, y
- ► formally, learn a distance d²(**x**,**y**)

Desiderata

- if **x** and **y** are *congruous* \Rightarrow small distance
- ▶ if **x** and **y** are *incongruous* \Rightarrow large distance

Parametrisation of the distance

Euclidean distance + linear projection W

$$d_W^2(\mathbf{x},\mathbf{y}) = \|W\mathbf{x} - W\mathbf{y}\|^2$$

Classification-like constraints

For all object pairs **x**, **y**

- congruous \implies distance **smaller** than threshold margin
- incongruous \Rightarrow distance **larger** than threshold + margin

Learning formulation

$$\min_{W,b} \mathcal{R}(W) + \sum_{(\mathbf{x},\mathbf{y})\in\mathcal{P}} \max\{0, 1-b+d_W^2(\mathbf{x},\mathbf{y})\} + \sum_{(\mathbf{u},\mathbf{v})\in\mathcal{N}} \max\{0, 1+b-d_W^2(\mathbf{u},\mathbf{v}))\}$$

Input: training data

- congruous pairs \mathcal{P} (i.e., positive)
- ▶ incongruous pairs \mathcal{N} (i.e., negative)

Input: regulariser $\mathcal{R}(W)$

- controls which type of solution is found
- may induce smoothness, sparsity, group-sparsity, low rank

Output: projection matrix *W*

Algorithm and variants

- Convex + sparsity: regularized dual averaging
- Non-convex + fixed dimensionality: stochastic gradient descent

Compare & compress

W improves the data separation (= learns a meaningful similarity)

W can also reduce the data dimensionality

Learning to verify people identities

[Simonyan et al. BMVC 2013]

Task

- decide if two pictures portray the same person
- Iearning accurate and compact face descriptors

Code available

http://www.robots.ox.ac.uk/~vgg/software/face_desc/

See also [Guillaumin et al. ICCV 2009, Sharma Hussain Jurie ECCV 2012, Chen et al. CVPR 2013]

Fisher Vector Faces (FVF)

[Simonyan et al. BMVC 2013]

1. FVF descriptor

- A. Features: *densely sampled*, *spatially augmented* SIFT features
- B. Encoding: Fisher Vectors
- C. Metric learning & dimensionality reduction
- D. Optional post-processing: binarization

Landmarks or not?

landmarks

FVF

Landmarks

- sample patches at landmarks
- good: alignment
- bad: expensive, brittle

Dense sampling

- sample patches uniformly
- ► good: simple, robust
- ► bad: no alignment

Spatially-augmented descriptors

Spatial augmentation

[Sanchez et al. PRL 2011]

- Append (x,y) to descriptors
- Alternative to spatial pyramid

Greatly reduced dimensionality

▶ *e.g.* 7-fold

stacked

PASCAL VOC + FV

mAP (%) [Chatfield *et al.* 2014]

Fisher Vectors as part-based models

Fisher Vectors as part-based models

Distinctive face elements

irrelevant

important

Gaussian component

FVF design choices

Benchmark: Labelled Faces in the Wild (LFW)

FVF still image performance

Benchmark: Labelled Faces in the Wild

Accuracy

Video Fisher Vector Faces (VF²)

[Parkhi et al. CVPR 2014]

From still images to videos

- RootSIFT
- Image, video, and jittered pooling

Dimensionality reduction

- Metric learning
- Binarization

Exciting area of research: hashing, binarization

https://sites.google.com/site/lsvrtutorialcvpr14/ [Jegou]

Other applications: local descriptor learning

71

[Simonyan et al. ECCV 2012, PAMI 2014]

Learning to compare & compress works beyond faces

State-of-the-art local descriptors and instance search

http://www.robots.ox.ac.uk/~vgg/software/learn_desc/

Convolutional neural networks (CNNs)

From left to right

- decreasing spatial resolution
- increasing feature dimensionality

Fully-connected layers

- same as convolutional, but with 1×1 spatial resolution
- contain most of the parameters

73

Convolutional layers

CNN components

Learning a CNN

argmin
$$E(\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_8)$$

Stochastic gradient descent (with momentum, dropout, ...)

Learning CNNs classifiers

Challenge

many parameters, prone to overfitting

Key ingredients

- very large annotated data
- heavy regularisation (dropout)
- stochastic gradient descent
- GPU(s)

Training time

- ~ 90 epochs
- days—weeks of training
- requires processing ~150 images/sec

What do CNNs learn?

IM GENET

- 1K classes
- ~ 1K training images per class
- ~ 1M training images

Deep dreams

[Erhan et al. 2009, Simonyan et al. ICLR 2014]

What does deep learning learn?

Invert a CNN by finding the image that maximises the output of a class

$$\mathbf{x}^* = \operatorname{argmax}_{\mathbf{x}} \operatorname{CNN}_{c}(\mathbf{x})$$

Weakly-supervised detectors

This can be used to **segment objects**

Remarkably, no object segmentation or bounding box is given during training

input image

input saliency

grabcut

[Simonyan et al. ICLR 2014]

De-convolutional networks

[Zeiler Fergus ECCV 2014]

"Transpose" the architecture to go from activations back to image

Deconvent visualization

Visualize sample images that excite a given neuron the most

top 9 exciting patches for each neuron their deconvnet reprojection

Deconvent visualization

Visualize sample images that excite a given neuron the most

top 9 exciting patches for each neuron

their deconvnet reprojection

What is a deconvnet?

The "transpose" of the CNN

- transpose of the filters (as linear operators)
- max-pooling: remembers activations from forward pass

Alternative interpretation

[Simonyan et al. 2014]

- backpropagation applied to the maximum activation problem is neary the same as a deconvnet
- approximate equivalence of "deep dreams" and deconvnets

CNNs as general purpose encoders

Pre-trained CNN encoders

- Architecture trained on ~ 1M ImageNet images
- Last softmax layer chopped off
- Output used as image encoding

Used as general-purpose features

- ► Applied to PASCAL VOC, Caltech, UCSD Birds, MIT Scene 67, ...
- [Zeiler & Fergus, DeCAF, Caffe, …]

Deep visual encodings

Evaluating deep and shallow encoders

A preview of Tuesday talk

Shallow encoder

Further Improved Fisher Vector

Deep encoders

- CNN Fast (CNN-F)
- CNN Medium (CNN-M)
- CNN Slow (CNN-S)

[Return of the devil is in the details, *Chatfield et al.* 2014]

Deep vs. shallow

PASCAL VOC 2007

Bag of Visual Words Old Fisher Vector New Fisher Vector CNN CNN + Tuning [Wei et al. 2014] + extra data

CNNs

- Outperform shallow encodings
- Are expensive to train, but fast to evaluate
- Do provide low-dimensional, general-purpose codes
- Will definitely get much better

See Tuesday's talk for a thorough evaluation

Software & models http://www.robots.ox.ac.uk/~vgg/software/deep_eval/

Feature generality

How large a gap can pre-trained features jump?

Object classification (PASCAL VOC)

[Chatifield et al. 2014, Razavian et al. 2014, Zeiler et al. 2014]

Object detection (PASCAL VOC)

- R-CNN [Girshick et al. 2014]
- Requires region proposals and adaptation for accurate localisation

Fine-grained classification (UCSD birds)

Part-R-CNN [Zhang et al. 2014]

MIT 67 scene classification

[Razavin et al. 2014]

Beyond objects?

Feature generality

ImageNet pre-trained features achieve state-of-the-art material recognition and texture naming (but similar to Fisher Vector) [Cimpoi et al. 2014]

[Describable textures dataset]

Feature sharing

The same CNN-based representations apply to different tasks

- ImageNet classification
- object category classification & detection
- scene recognition
- fine-grained bird classification
- texture recognition

Not dissimilar from SIFT, HOG

Can we learn features jointly from multiple tasks?

See e.g. [Bengio Courville Vincent PAMI 2013] for a great overview

Example: text spotting

Automatically detect & recognise text in natural images

Also known as PhotoOCR

Tasks are learned synergistically

What have we learned?

Diagnose the model

Use the "deep dreams" trick to visualise the learned character classes:

[Jaderberg et al. ECCV 2014]

Do it yourself

Software

- CUDA-Convnet 1 & 2 <u>https://code.google.com/p/cuda-convnet/</u>
- Overfeat / Torch [Lua] <u>http://cilvr.nyu.edu/doku.php?</u> <u>id=code:start</u>
- Berkeley Caffe [Python] <u>http://caffe.berkeleyvision.org</u>
- Theano [Python] <u>http://deeplearning.net/software/</u> <u>theano/</u>
- LibCCV <u>http://libccv.org</u>

Pre-trained models

- Return of the Devil in the Details <u>http://www.robots.ox.ac.uk/~vgg/</u> <u>research/deep_eval/</u>
- Caffé reference models <u>http://caffe.berkeleyvision.org/</u> <u>getting_pretrained_models.html</u>

http://www.vlfeat.org/matconvnet

A MATLAB toolbox for CNNs

- Similar in spirit to <u>VLFeat.org</u>
- Expose the fundamental computational blocks as MATLAB functions
- Designed for quick experimentation in this environment

Flexibility

- Can run Caffe models
- Pre-trained models form Caffe and VGG

Efficiency

- Computations are inspired by Berkeley Caffe
- Native MATLAB GPU support
- 60-70% training speed of Caffe (and improving)

Backpropagation

Compute derivatives using the chain rule

A CNN toolbox for MATLAB

Forward computation

- ► operates on a *stack of images*
- ▶ each image has *d* feature channels

Available blocks

- convolution, pooling, normalization, loss, ReLU, softmax, dropout
- easily extensible (often directly in MATLAB code)

A CNN toolbox for MATLAB

Backward computation

require network derivatives from block downstream

► chain rule

Example

```
% download a pre-trained CNN from the web
urlwrite(...
    'http://www.vlfeat.org/matconvnet/models/imagenet-vgg-f.mat', ...
    'imagenet-vgg-f.mat');
net = load('imagenet-vgg-f.mat') ;
% obtain and preprocess an image
im = imread('peppers.png') ;
im = single(im) ;
im = imresize(im , net.normalization.imageSize(1:2)) ;
im = im - net.normalization.averageImage ;
% run the CNN
res = vl_simplenn(net, im_) ;
% show the classification result
scores = squeeze(gather(res(end).x)) ;
[bestScore, best] = max(scores) ;
figure(1) ; clf ; imagesc(im) ;
title(sprintf('%s (%d), score %.3f',...
   net.classes.description{best}, best, bestScore)) ;
```

Wrapping up

Wrapping Up

Represent & predict

- A good representation captures a useful notion of similarity
- Works as a prior in prediction

Representations from hand-crafted features

► HOG, BoVW, VLAD, Fisher Vectors

Representations from kernels

Derive implicit and explicit representation from a concept of similarity

Representations from metric learning

Compare & compress with metric learning

Representations from deep learning

- Visualisation, transfer learning, feature sharing
- Excellent performance

References

[1] F. R. Bach and M. I. Jordan. Predictive low-rank decomposition for kernel methods. In ICML, 2005. [2] H. Bay, A. Ess, T. Tuytelaars, and L. van Gool. Speeded-up robust features (SURF). Computer Visionand Image Understanding, 2008. [3] M. B. Blaschko, R. B. Girshick, J. Kannala, I. Kokkinos, S. Mahendran, S. Maji, S. Mohammed, E. Rahtu, N. Saphra, K. Simonyan, B. Taskar, D. Weiss, and A. Vedaldi. Towards a detailed under-standing of objects and scenes in natural images. Technical report, Johns Hopkins Center For Signal and Language Processing, 2012. [4] L. Bo and C. Sminchisescu. Efficient match kernels between sets of features for visual recognition. In Proc. NIPS, 2009. [5] A. Bosch, A. Zisserman, and X. Mun oz. Scene classification via pLSA. In Proc. ECCV, 2006. [6] A. Bosch, A. Zisserman, and X. Mun oz. Image classification using random forests and ferns. In Proc.ICCV, 2007. [7] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001. [8] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. PAMI, 24(5), 2002. [9] G. Csurka, C. R. Dance, L. Dan, J. Willamowski, and C. Bray. Visual categorization with bags of keypoints. In Proc. ECCV Workshop on Stat. Learn. in Comp. Vision, 2004. [10] C. Elkan. Using the triangle inequality to accelerate k-means. In Proc. ICML, 2003. [11] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research, 9, 2008. [12] L. Fei-Fei, R. Fergus, and P. Perona. A Bayesian approach to unsupervised one-shot learning of objectcategories. In Proc. ICCV, 2003. [13] P. F. Felzenszwalb and D. P. Huttenlocher. Distance transforms of sampled functions. Technical report, Cornell University, 2004. [14] B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science, 315, 2007 [15] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic expected time. ACM Transactions on Mathematical Software, 1977. [16] B. Fulkerson, A. Vedaldi, and S. Soatto. Localizing objects with smart dictionaries. In Proc. ECCV, 2008. [17] T. Hastie. Support vector machines, kernel logistic regression, and boosting. Lecture Slides, 2003. [18] T. Joachims. Making large-scale support vector machine learning practical. In Advances in kernel methods: support vector learning, pages 169–184. MIT Press, Cambridge, MA, USA, 1999.[19] T. Joachims. Training linear SVMs in linear time. In Proc. KDD, 2006. [20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neuralnetworks. In Proc. NIPS, 2012. [21] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bag of features: Spatial pyramid matching for recognising natural scene categories. In Proc. CVPR, 2006. [22] B. Leibe, K. Micolajckzyk, and B. Schiele. Efficient clustering and matching for object class recognition. In Proc. BMVC, 2006. [23] D. G. Lowe. Object recognition from local scale-invariant features. In Proc. ICCV, 1999. [24] D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2(60):91-110, 2004. [25] S. Maji and A. C. Berg. Max-margin additive classifiers for detection. In Proc. ICCV, 2009. [26] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. In Proc. BMVC, 2002. [27] D. Nist'er and H. Stew'enius. Scalable recognition with a vocabulary tree. In Proc. CVPR, 2006. [28] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks. In Proc. CVPR, 2014. [29] O. Parkhi, K. Simonyan, A. Vedaldi, and A. Zisserman. A compact and discriminative face descriptor. In Proc. CVPR, 2014. [30] M. Paulin, J. Revaud, Z. Harchaoui, C. Schidm, and F. Perronnin. Transformation pursuit in imageclassification. In Proc. CVPR, 2014. [31] F. Perronnin, J. S'anchez, and Y. Liu. Large-scale image categorization with explicit data embedding. In Proc. CVPR, 2010. [32] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In Proc. CVPR, 2007. [33] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Proc. NIPS, 2007. [34] B. Sch"olkopf. The kernel trick for distances. Proc. NIPS, 2001. [35] B. Sch"olkopf and A. Smola. Learning with Kernels, chapter Robust Estimators, pages 75 - 83. MIT Press, 2002. [36] B. Sch"olkopf and A. J. Smola. Learning with Kernels. MIT Press, 2002. [37] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Primal Estimated sub-GrAdient SOlver for SVM, MBP, 2010. [38] J. Shawe-Taylor and N. Cristianini. Support Vector Machines and other kernel-based learning methods. Cambridge University Press, 2000. [39] K. Simonyan, O. M. Parkhi, A. Vedaldi, and A. Zisserman. Fisher Vector Faces in the Wild. In Proc. BMVC, 2013. [40] K. Simonyan, A. Vedaldi, and A. Zisserman. Descriptor learning using convex optimisation. In Proc. ECCV, 2012. [41] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep fisher networks for large-scale image classification. In Proc. NIPS, 2013. [42] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep fisher networks and class saliency maps for object classification and localisation. In ILSVRC workshop, 2014. [43] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. In Proc. ICLR, 2014. [44] S. N. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Gen. Gpu-based video feature tracking and matching. In Workshop on Edge Computing Using New Commodity Architectures, 2006. [45] J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching in videos. In Proc. ICCV, 2003. [46] N. Slonim and N. Tishby. Agglomerative information bottleneck. In Proc. NIPS, 1999. [47] E. Tola, V. Lepetit, and P. Fua. DAISY: An efficient dense descriptor applied to wide-baseline stereo. PAMI, 2010. [48] A. Vedaldi, S. Mahendran, S. Tsogkas, S. Maji, R. Girshick, J. Kannala, E. Rahtu, I. Kokkinos, M. B. Blaschko, D. Weiss, B. Taskar, K. Simonyan, N. Saphra, and S. Mohamed. Understanding objects in detail with fine-grained attributes. In Proc. CVPR, 2014. [49] A. Vedaldi and S. Soatto. Quick shift and kernel methods for mode seeking. In Proc. ECCV, 2008. [50] G. Wang, Y. zhang, and L. Fei-Fei. Using dependent regions for object categorization in a generative framework. In Proc. CVPR, 2006. [51] Z. Wang, B. Fan, and F. Wu. Local intensity order pattern for feature description. In Proc. ICCV 2011.

- [52] J. Weston, S. Bengio, and N. Usunier. WSABIE: Scaling up to large vocabulary image annotation. In Proc. IJCAI, 2011.
- [53] C. K. I. Williams and M. Seeger. Using the Nystr"om method to speed up kernel machines. In Proc. NIPS, 2001.
- [54] Jegou et al. 09 Douze, Schmid, "On the burstiness of visual elements", Proc. CVPR, 2009