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Image representations,!
from shallow to deep



http://www.robots.ox.ac.uk/~vgg/research/on-the-fly/

Demo: image search 2

BBC Research & 
Development explains how 
their work with Oxford 
University is opening up new 
ways to search archive 
footage.1

1http://www.bbc.co.uk/informationandarchives/archivenews/2014/face-recognition-and-new-ways-to-search-for-archive.html

http://www.robots.ox.ac.uk/~vgg/research/on-the-fly/
http://www.bbc.co.uk/informationandarchives/archivenews/2014/face-recognition-and-new-ways-to-search-for-archive.html


Searching by type 3



Searching by instance 4



Search by example 5



Searching by identity 6



Challenges: intra-class variation 7



Challenges: viewpoint, occlusions, clutter, illumination, … 8
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Challenges: size

 Learn objects, people on the fly!
▶ Build models for new queries 

on the spot!

 Respond fast!
▶ Search millions of frames 

in a few seconds!

 Small footprint!
▶ Index millions of frames in RAM

9

BBC Footage 
Duration # of Frames # of  Keyframes Footprint Faces Detected

3 - 40 K hours 10 - 150 M 3 - 35 M 1 - 10 TB 5 - 20 M



Many other applications

 Exemplified applications!
▶ Object category recognition!
▶ Object instance retrieval!
▶ Face detection & recognition!

 Image representations apply to most areas of CV !
▶ Object detection!
▶ Visual tracking!
▶ 3D reconstruction!
▶ Semantic segmentation!
▶ Pose estimation!
▶ Interactive segmentation!
▶ Material recognition!
▶ …
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Image-based object models 11

object = distribution of 2D patterns



Linear predictor 12

w

bicycle?

x

linear predictor

F (x) = hw, xi



Using linear predictors on non-vectorial data

Image representations

 An encoder maps the data into a vectorial representation!

 Allows linear predictors to be applied to images, text, sound, videos, …

13

x �(x) 2 Rd

encoder Φ representation

F (x) = hw,�(x)i



Meaningful representation 14

x
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y

�(x)

�(y)

�(z)

embedding space Rd

near
far

congruous 
pair

incongruous 
pair

Semantic similarity Vector similarity 
(distance)

representation

Φ is invariant to nuisance 
factors, sensitive to semantic 

variations



Learning predictors 15

labelled data  
(x1,y1), (x2,y2), …

smoothness 
hyperparameter

predictor 
parameters 

w*

learning!
large-scale  
optimiser

encoder!
Φ

similarity 
notion

w⇤ = argminE (w)



A typical predictor

Support vector machines

 Optimisation!
▶ Very large convex problem!
▶ Key insight: an accurate solution is not required!

 O(N) algorithms exist!
▶ Stochastic gradient descent, dual coordinate ascent, …!
▶ Can learn on the fly on thousands or millions of examples
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E (w) = �
kwk2

2

+

1

N

NX

i=1

max{0, 1� yi hw, xi i}

… is smooth … … and fits the training dataThe predictor …

[Learning with Kernels, Schölkopf Smola 2002]



Smoothness and generalisation

 Key challenge: extrapolate the training data!
▶ Achieved by smoothness!
▶ I.e. similar vectors receive similar scores

17

w

linear predictor
�(x)

�(y)

F (x) = hw,�(x)i

(F (x)� F (y))2 = (hw,�(x)� �(y)i)2  kwk · k�(x)� �(y)k



Good representations

 Main desiderata!
▶ Powerful: meaningful similarity / untangles factors!
▶ Cheap: fast to evaluate (can be computed on the fly)!
▶ Compact: small code (takes little RAM, disk, IO)!

 Others!
▶ Easy to learn (when not hand-crafted)!
▶ Easy to implement
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encoder!
Φ

x �(x)



deep learning Φ predictor
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[Lowe 1999, Dalal & Triggs 2005]

Histogram of Oriented Gradients

 HOG captures the local gradient (edge) orientations in the image
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HOG challenge 22

HOG(x) HOG-1(x)

[Vondrick et al. 2013]

x



[Sivic & Zisserman 2003, Csurka et al. 2004, Nowak et al. 2006]

Bag of visual words

 BoVW construction!

1. Extract local descriptor densely!

2. Quantise descriptors!

3. Form histogram!

2. Discards spatial information
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...

+ l2 normalisation



Quantisation 24

k-means

Airplane

Motorbike

Face

Bike



BoVW intuition

 Discarding spatial information gives lots of invariance!

 Visual words represent “iconic” image fragments
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...

person

...

musical instrument

...

bike



The loss of spatial information

 Bag of features representation effectively forgets the relative location of the 
features
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image

=

=

plausible deformation

=

=

implausible deformation



[Lazebnik et al.  2006]

Spatial histograms

 Weak geometry: pool spatial information locally
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... ... ...
...



Spatial histograms capture weak geometry 28

image

=

=

plausible deformation

≠

≠

implausible deformation



Summary so far

... ... ... ...

VQ

Linear SVM

dogs
[Luong & Malik, 1999] 
[Varma & Zisserman, 2003] 
[Csurka et al, 2004] 
[Vogel & Schiele, 2004] 
[Jurie & Triggs, 2005] 
[Lazebnik et al, 2006] 
[Bosch et al, 2006]
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Advanced encodings

 Soft and sparse assignments, e.g.!
▶  [Philbin et al CVPR 08, Gemert et al ECCV 08]!
▶  Locality-constrained linear coding  (LLC) – [Wang et al CVPR 10]!

 Representing SIFT distribution mean in Voronoi cell, e.g.!
▶  Super-Vector Coding [Zhou et al ECCV 10]!
▶  VLAD  [Jegou et al CVPR 10]!

 Representing SIFT distribution mean and covariance in Voronoi cell, e.g. !
▶  Fisher vector [Perronnin et al CVPR 07 & 10, ECCV 10]!

 Improvements to normalization, PCA, whitening for VLAD/FV!
▶  Chen et al 2011 [Jegou & Chum ECCV 12]!
▶  All about VLAD [Arandjelovic & Zisserman CVPR 13]
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[Jegou et al. 2010]

Vector of locally aggregated descriptors (VLAD) 31
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xi
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MX
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first order statistics

� =

2
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3

7775
VLAD encoding + l2 normalisation



[Perronnin et al. ECCV 201, Sharma Hussain Jurie ECCV 2010, Sanchez et al. 2103]

Fisher Vector (FV) 32

xi

Gaussians!
(μk,Σk) 

first and second order statistics

FV encoding
+ sqrt-l2  
normalisation
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Reference benchmark: PASCAL VOC

 Performance  
mean Average Precision (mAP)
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AEROPLANE BICYCLE BIRD BOATBUS BOTTLE

PERSON POTTEDPLANT SHEEPTRAIN HORSE MOTORBIKE TVMONITOR

CAR CAT CHAIR COWSOFA DININGTABLE DOG

Task: decide if an image contains any of twenty object classes

⇄

50% of object occurrences 
are recognised reliablymAP = 50% ⇄

roughly

[Everingham et al, 2006-12]



A comparison of encodings [Chatfield et. al. BMVC 2011]

The devil is in the details

 2005—12: an industrial production of encodings 
[Sivic et al. 03, Csurka et al. 04, Zhou et al. 10, Perronnin et al. 08, Jegou et al. 10, …]!

 Our evaluation compared representative ones on an equal footing!

 The (Improved) Fisher Vectors came out on top  
[see Tuesday’s talk for a comparison with deep learning]
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Bag of Visual Words (BoVW)

Soft-quantized BoVW

Super Vector Coding (SVC)

Locality Linear Coding (LLC)

Fisher Vector (FV)

mAP (%)

61.7

59.7

58.2

56.3

55.3



Some fundamental ideas 35

Local and translation 
invariant operators!

gradients, filters, visual 
words

Untangling!

sparsity, quantisation

Pooling!

max, sum, spatial 
pooling
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Kernels

 A kernel directly encodes a notion of data similarity

37

x

z

y

congruous 
pair

incongruous 
pair

K(x,y)

K(y,z)

large score

small score

≫
K : (x, y) 7! R



Similarity and kernels

 Recall: the encoder ɸ(I) should embody a useful notion of similarity!

 Similarity can be measured by the inner product or kernel ɸ(I), ɸ(I’)

38

bike images

other images

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

�

linear kernel
h�(I ),�(I 0)i



Normalisation

 Extracting the representation ɸ(I) induces a notion of “similarity” between images 

 A natural property: any object is most similar to itself 

 This property is satisfied provided that features are L2 normalised
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kernel K (I , I 0) = h�(I ),�(I 0)i

8I , I 0 : K (I , I 0)  K (I , I )

�(I ) 1

k�(I )k�(I )
✓

�(I )
�(I 0)



Kernel predictor

 Task: predict the class of a datum x!

 How: use K to compare x to all training examples x1, x2, …

40

F (x) = ↵1K (x, x1) + ↵2K (x, x2) + ↵3K (x, x3) + ↵4K (x, x4) + ...

F (x) =
NX

i=1

↵iK (x, xi )



Non-linear kernels 41

Linear SVM

✔ fast!
✘ restrictive

Non-linear SVM

✘ much slower!
✔powerful

F (x) = hw, xi

F (x) =
NX

i=1

↵iK (x, xi )
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Additive homogeneous kernels 42
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Additive kernels example 43

Bag of Visual Word on PASCAL VOC 07

Linear kernel

Hellinger’s kernel

Chi2 kernel

mAP (%)

53.4

52.0

46.5

BoVW Kernel  
Predictor label



Burstiness and the square-root map

 Burstiness!
▶ words may occur in bursts [Jegou et al. 2009]!
▶ compensate by taking the square root

44
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Effect of square rooting

 Extracting the representation ɸ(I) induces a notion of “similarity” between images

45

kernel

linear kernel

bike images

other images
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Non-linear kernels are expensive 46

thousand bicycles many more non-bicycle

F (x) =
NX

i=1

↵iK (x, xi )



Kernel maps

 Positive definite kernel = inner product of feature vectors

47

x

y

K(x,y)

similarity

Ψ(x)Ψ(x)

⟨Ψ(x),Ψ(y)⟩

x

feature map Ψ representation

inner product in  
vector spacekernel

 (x) 2 V



Analytical explicit maps

 Empirical maps!
▶ Numerical!
▶ Good: general, adaptive!
▶ Bad: slow, dataset specific 

 Analytical maps!
▶ Closed-form!
▶ Good: fast, dataset agnostic!
▶ Bad: kernel-specific, non-

adaptive

48

A few kernels have trivial maps 
 
 
 
 

�(x) = xK (x, y) = hx, yilinear

�(x) =
p
xHellinger’s K (x , y) =

p
xy

Which other kernels have analytical maps?



Explicit kernel maps
▶ Kernel maps!

▶ often infinite dimensional!
▶ used implicitly (kernel trick)!
▶ theoretical  

▶ Explicit kernel maps!
▶ finite dimensional approximation!
▶ used explicitly!
▶ practical

49

K (x, y) ⇡ h�(x),�(y)i
�(x) 2 Rd

V
 (x)


�1(x)
�2(x)

�
= �(x)

K (x, y) = h (x), (y)i

 (x) 2 V



Explicit kernel maps
▶ Kernel maps!

▶ often infinite dimensional!
▶ used implicitly (kernel trick)!
▶ theoretical  

▶ Explicit kernel maps!
▶ finite dimensional approximation!
▶ used explicitly!
▶ practical

50

K (x, y) ⇡ h�(x),�(y)i
�(x) 2 Rd

 (x)

�(x)

�(y)

 (y)

K (x, y) = h (x), (y)i

 (x) 2 V



Explicit maps are efficient

 Much faster evaluation!

 Much faster learning

51

Non-linear SVM  
LibSVM!

!
O(N2)

!
!
!

O(1)

explicit map
!
!
!

O(N)

F (x) =
NX

i=1

↵iK (x, xi )

Linear SVM solver  
LibLinear!

!
O(N)

explicit map

F (x) = hw,�(x)i



Example: Chi2 map 52

With the hom. kernel feature map!
x = .01:.01:1 ;!
psi = vl_homkermap(x,1) ;!
K = psi'*psi ;

VLFeat Toolbox  
http://www.vlfeat.org

MATLAB code for Chi2 kernel!
x = .01:.01:1 ;!
for i = 1:100!
  for j = 1:100!
    K(i,j) = ...!
      2*x(i)*x(j)/(x(i)+x(j));!
  end!
end



Example: Chi2 map 53

Caltech-101 category recognition

#1,500

 1/2 h 14 s
100× speedup

DaimlerChrylser pedestrian recognition

#20,000

 > 1 h 22.6 s
160× speedup

Trecvid 2009 video indexing

#70,000

 1 h 5 m

4× speedup

training time



From similarity to features

Kernel as representations

1. Start from a concept of similarity!
▶ homogeneous kernels = good for histograms!
▶ Gaussian kernels = local similarity!
▶ …!

2. Capture it in a positive definite function!
▶ infinite dimensional feature map!
▶ implicit data representation!

3. Find finite dimensional approximations!
▶ explicit data representation

54

similarity!
K

implicit 
representation!

ψ

explicit 
representation  

Φ



Kernel methods are very mature

 Theory!
▶ reproducing kernel!
▶ regularization theory!
▶ statistical learning theory!

 Many kernels!
▶ generic: linear, polynomial, 

Gaussian!
▶ for histograms: homogeneous 

intersetion, Chi2, sqrt, log, …!
▶ combinations: exp-chi2, MKL, …!

 Kernel trick: flexibility!
▶ learn with any kernel!

!

 Data aware approximations !
▶ (additive) Nystrom!
▶ incomplete Cholesky!

 Data-agnostic approximations!
▶ random Fourier features!
▶ fast food!
▶ homogeneous kernel map!
▶ intersection kernel map!

 Algorithms!
▶ power mean for add. kernels!
▶ online-learning with kernels

55

…
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For a thorough review: [Weinberger Saul JMLR 2009]

Learning to compare

 Goal!
▶ compare (rather than classify) objects x, y!
▶ formally, learn a distance d2(x,y)!

 Desiderata!
▶ if x and y are congruous! ⟹! small distance!              
▶ if x and y are incongruous! ⟹! large distance!           

 Parametrisation of the distance

58

d2
W (x, y) = kW x�W yk2

Euclidean distance + linear projection W



Classification-like constraints

 For all object pairs x, y!
▶ congruous ! ⟹!  distance smaller than threshold! -! margin!                   
▶ incongruous! ⟹!  distance larger than threshold! +! margin                  

59

d2
W (x, y) = kW x�W yk2 < b

x y

congruous pairs

d2
W (u, v) = kWu�W vk2 > b

u
v

incongruous pairs

d2
W (x, y) < b � 1, d2

W (u, v) > b + 1



Learning formulation

 Input: training data!

▶ congruous pairs P (i.e., positive)!

▶ incongruous pairs N (i.e., negative)!

 Input: regulariser R(W)!

▶ controls which type of solution is found!
▶ may induce smoothness, sparsity, group-sparsity, low rank!

 Output: projection matrix W!

 Algorithm and variants!
▶ Convex + sparsity: regularized dual averaging!
▶ Non-convex + fixed dimensionality: stochastic gradient descent

60

min

W ,b
R(W ) +

X

(x,y)2P

max{0, 1� b + d2
W (x, y)}+

X

(u,v)2N

max{0, 1 + b � d2
W (u, v))}



Compare & compress 61

 W improves the data separation (= learns a meaningful similarity)!

 W can also reduce the data dimensionality!
▶ simply pick m ≪ n

d2
W (x, y) = kW x�W yk2 W 2 Rm⇥n

x 2 R

n
x̄ = W x 2 R

m+

Euclidean distance linear projection

W

x

x =



[Simonyan et al. BMVC 2013]

Learning to verify people identities

 Task!
▶ decide if two pictures portray the same person!
▶ learning accurate and compact face descriptors!

 Code available!
▶ http://www.robots.ox.ac.uk/~vgg/software/face_desc/

62

SAME DIFFERENT 

See also [Guillaumin et al. ICCV 2009, Sharma Hussain Jurie ECCV 2012 , Chen et al. CVPR 2013]

http://www.robots.ox.ac.uk/~vgg/software/face_desc/


[Simonyan et al. BMVC 2013]

Fisher Vector Faces (FVF)

1. FVF descriptor!

A. Features: densely sampled, spatially augmented SIFT features!

B. Encoding: Fisher Vectors!

C. Metric learning & dimensionality reduction!

D. Optional post-processing: binarization

63

descriptor!
computation

Dense SIFT

= +

Fisher Vector

d2
W (x, y) = kW x�W yk2+

Metric learning



Landmarks or not?

 Landmarks!
▶ sample patches at landmarks!
▶ good: alignment!
▶ bad: expensive, brittle  

 Dense sampling!
▶ sample patches uniformly!
▶ good: simple, robust!
▶ bad: no alignment

64

+
+

+ +

+
+

+ +

landmarks FVF



Spatially-augmented descriptors

 Spatial augmentation 
[Sanchez et al. PRL 2011]!

▶ Append (x,y) to descriptors!
▶ Alternative to spatial pyramid!

 Greatly reduced dimensionality!
▶ e.g. 7-fold

65


x

y

�

PASCAL VOC + FV

Spatial  
pyramid  
327K D

Spatial  
augumentation  

42K D

mAP (%)

63.51

63.66

[Chatfield et al. 2014]
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Fisher Vectors as part-based models 66
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Distinctive face elements

Fisher Vectors as part-based models 67

irrelevant important detail

Wx =
2

6666666664

v1
u1
v2
u2
...
vK
uK

3

7777777775

Gaussian component

importance



Benchmark: Labelled Faces in the Wild (LFW)

FVF design choices 68

vanilla FV

vanilla FV + PCA

+ learned diagonal metric

+ spatial augmentation

+ denser, more Gaussians

+ learned full metric

+ flips, learend similarity

recognition accuracy
75 79.75 84.5 89.25 94

93.1
92.0

90.9
89.8

89.0
78.6
79.3

dimension of the code
10 1,000 100,000

512
128

67584
33792
32768

128
32768

Metric learning dramatically 
boosts performance

1

Learning a full metric 
achieves a very significant 

compression

2

1

2

Simple  
(no alignment / landmarks)

3



Benchmark: Labelled Faces in the Wild

FVF still image performance 69

State-of-the-art

LDML-MkNN
Combined multishot

Combined PLDA
face.com

CMD + SLBP]
LBP multishot

LBP PLDA
SLBP
CMD

High-dim SIFT
High-dim LBP

FVF

Accuracy

93.0%
93.2%

91.8%
91.7%

90.0%
87.3%

85.2%
92.6%

91.3%
90.1%

89.5%
87.5%

Simpler than  
most alternatives

2

Accurate!

Fast!

Small

1

1

2

FVF



[Parkhi et al. CVPR 2014]

Video Fisher Vector Faces (VF2)

 From still images to videos!
▶ RootSIFT!
▶ Image, video, and jittered pooling  

 Dimensionality reduction!
▶ Metric learning!
▶ Binarization

70

Exciting area of research: hashing, binarization
https://sites.google.com/site/lsvrtutorialcvpr14/ 

[Jegou]

https://sites.google.com/site/lsvrtutorialcvpr14/


[Simonyan et al. ECCV 2012, PAMI 2014]

Other applications: local descriptor learning

 Learning to compare & compress works beyond faces!

 State-of-the-art local descriptors and instance search!

 http://www.robots.ox.ac.uk/~vgg/software/learn_desc/
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Convolutional neural networks (CNNs)

 From left to right!
▶ decreasing spatial resolution!
▶ increasing feature dimensionality!

 Fully-connected layers!
▶ same as convolutional, but with 1 ⨉ 1 spatial resolution!

▶ contain most of the parameters

73

c1 c2 c3 c4 c5 f6 f7 f8 code

x CNN(x)



Convolutional layers 74

(F, b)

linear 
filters

RELU!
max(0,z)

non-linear 
gating

max

spatial  
pooling

sliding l2

channel  
normalisation

↓

down- 
sampling

c1 c2 c3 c4 c5 f6 f7 f8 code



CNN components 75

(F, b)

linear 3D filters

x

y = F ⇤ x+ b ↓

downsampling

x y

ReLU

x

y = max{0, x}

max

spatial pooling

x

yijk = max

pq2⌦ij

xpqk

sliding l2

normalization

x

y

{



Learning a CNN 76

c1 c2 c3 c4 c5 f6 f7 f8 loss

bike

error

w1 w2 w3 w4 w5 w6 w7 w8

argminE (w1,w2, ... ,w8)

Stochastic gradient descent 
(with momentum, dropout, …)

E( )



Learning CNNs classifiers

 Challenge!
▶ many parameters, prone to overfitting!

 Key ingredients!
▶ very large annotated data !
▶ heavy regularisation (dropout)!
▶ stochastic gradient descent!
▶ GPU(s)!

 Training time!
▶ ~ 90 epochs!
▶ days—weeks of training!
▶ requires processing ~150 images/sec
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▶ 1K classes!
▶ ~ 1K training images per class!
▶ ~ 1M training images

What do CNNs learn?



[Erhan et al. 2009, Simonyan et al. ICLR 2014]

Deep dreams

 What does deep learning learn?!

 Invert a CNN by finding the image that maximises the output of a class
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x

⇤
= argmax

x

CNNc(x)

c1 c2 c3 c4 c5 f6 f7 f8 code
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Weakly-supervised detectors

 This can be used to segment objects!

 Remarkably, no object segmentation or bounding box is given during training
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input image input saliency grabcut

[Simonyan et al. ICLR 2014]



[Zeiler Fergus ECCV 2014]

De-convolutional networks

 “Transpose” the architecture to go from activations back to image
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c1 c2 c3 c4 c5 f6 f7 f8 code

cT1 cT2 cT3 cT4 cT5 fT6 fT7 fT8



Visualize sample images that excite a given neuron the most

Deconvent visualization

 Layer 1
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filter 
response

top 9 exciting patches 
for each neuron

their deconvnet 
reprojection



Visualize sample images that excite a given neuron the most

Deconvent visualization

 Layer 5
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top 9 exciting patches 
for each neuron

their deconvnet 
reprojection

filter 
response



What is a deconvnet?

 The “transpose” of the CNN!
▶ transpose of the filters (as linear operators)!
▶ max-pooling: remembers activations from forward pass!

 Alternative interpretation 
[Simonyan et al. 2014]!

▶ backpropagation applied to the maximum activation problem is neary 
the same as a deconvnet!

▶ approximate equivalence of “deep dreams” and deconvnets
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CNNs as general purpose encoders

 Pre-trained CNN encoders!
▶ Architecture trained on ~ 1M ImageNet images!
▶ Last softmax layer chopped off!
▶ Output used as image encoding!

 Used as general-purpose features!
▶ Applied to PASCAL VOC, Caltech, UCSD Birds, MIT Scene 67, …!
▶ [Zeiler & Fergus, DeCAF, Caffe, …]
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c1 c2 c3 c4 c5 f6 f7 f8 code



Deep visual encodings 87

Krizhevsky & Hinton  
Toronto!

Winner ImageNet 2012 
CUDA ConvNet

DeCAF, Caffe  
UC Berkeley!

General purpose features
Zeiler & Fergus 

(NYU)!
General purpose features,!

deconvolution, …

[Oquab et al. 2014] 
INRIA!

State-of-the-art 
PASCAL classification

Years 
of  

deep  
learning  
research!
(Toronto, 

NYU, 
Montreal, 
Google, 

Facebook, 
Microsoft!

…)

[Girshick et al. 2014] 
UC Berkeley!

State-of-the-art 
PASCAL detection

Sermanet & LeCun  
(NYU, Facebook)!

OverFeat
[Razavian et al. 2014] 

KTH!
More applications



A preview of Tuesday talk

Evaluating deep and shallow encoders

 Shallow encoder!
▶ Further Improved Fisher Vector 

 Deep encoders!
▶ CNN Fast (CNN-F)!
▶ CNN Medium (CNN-M)!
▶ CNN Slow (CNN-S)
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encoder predictor label

Deep or shallow? Linear SVM

[Return of the devil is in the details, Chatfield et al. 2014]



Deep vs. shallow

 CNNs!
▶ Outperform shallow encodings!
▶ Are expensive to train, but fast to evaluate!
▶ Do provide low-dimensional, general-purpose codes!
▶ Will definitely get much better
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PASCAL VOC 2007

Bag of Visual Words
Old Fisher Vector

New Fisher Vector
CNN

CNN + Tuning
[Wei et al. 2014] + extra data

mAP (%)

85.2
82.4

80.1
68.0

61.7
55.3 ~ 2006

~ 2011

~ 2013
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See Tuesday’s talk for a thorough evaluation

http://www.robots.ox.ac.uk/~vgg/software/deep_eval/
Software & models

http://www.robots.ox.ac.uk/~vgg/software/deep_eval/


Feature generality

 How large a gap can pre-trained features jump?  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Object classification (PASCAL VOC)!
▶ [Chatifield et al. 2014, Razavian et al. 2014, Zeiler 

et al. 2014]!
Object detection (PASCAL VOC)!

▶ R-CNN [Girshick et al. 2014]!
▶ Requires region proposals and adaptation for 

accurate localisation!
Fine-grained classification (UCSD birds)!

▶ Part-R-CNN  [Zhang et al. 2014]!
MIT 67 scene classification!

▶ [Razavin et al. 2014]

  ImageNet 
pre-training

Beyond objects?



Feature generality

 ImageNet pre-trained features achieve state-of-the-art material recognition and 
texture naming (but similar to Fisher Vector) [Cimpoi et al. 2014]
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matted meshed paisley perforated

pitted pleated polka-dotted porous potholed scaly smeared spiraled

banded blotchy braided bubbly bumpy chequered cobwebbed cracked crystalline crosshatched

dotted fibrousflecked freckled frilly gauzy grid grooved honeycombed

interlaced knitted lacelike lined marbled

sprinkled

stained stratified striped studded swirly veined waffled

woven

wrinkled

zigzagged

[Describable textures dataset]



Feature sharing

 The same CNN-based representations apply to different tasks!
▶ ImageNet classification!
▶ object category classification & detection!
▶ scene recognition!
▶ fine-grained bird classification!
▶ texture recognition!

 Not dissimilar from SIFT, HOG!

 Can we learn features jointly from multiple tasks?
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See e.g. [Bengio Courville Vincent PAMI 2013] for a great overview



Example: text spotting

 Automatically detect & recognise text in natural images!

 Also known as PhotoOCR
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Tasks are learned synergistically 95

conv1 conv2

fc11 fc21

fc13 fc23

fc12 fc22

fc14 fc24

text / no text 
(2 classes)

case-insensitive  
characters  
(37 classes)

case-sensitive  
characters 
(63 classes)

bigrams  
(604 classes)

shared specific

large  
dataset

smaller 
datasets

information flow

[Jaderberg et al. ECCV 2014]



Diagnose the model

What have we learned?

 Use the “deep dreams” trick to visualise the learned character classes:
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[Jaderberg et al. ECCV 2014]



Do it yourself

 Software!
▶ CUDA-Convnet 1 & 2  

https://code.google.com/p/cuda-
convnet/!

▶ Overfeat / Torch [Lua] 
http://cilvr.nyu.edu/doku.php?
id=code:start!

▶ Berkeley Caffe [Python] 
http://caffe.berkeleyvision.org!

▶ Theano [Python] 
http://deeplearning.net/software/
theano/!

▶ LibCCV  
http://libccv.org!

!

 Pre-trained models!
▶ Return of the Devil in the Details 

http://www.robots.ox.ac.uk/~vgg/
research/deep_eval/!

▶ Caffé reference models 
http://caffe.berkeleyvision.org/
getting_pretrained_models.html!
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https://code.google.com/p/cuda-convnet/
http://cilvr.nyu.edu/doku.php?id=code:start
http://caffe.berkeleyvision.org
http://deeplearning.net/software/theano/
http://libccv.org
http://www.robots.ox.ac.uk/~vgg/research/deep_eval/
http://caffe.berkeleyvision.org/getting_pretrained_models.html


http://www.vlfeat.org/matconvnet

MatConvNet

 A MATLAB toolbox for CNNs!
▶ Similar in spirit to VLFeat.org!
▶ Expose the fundamental computational blocks as MATLAB functions!
▶ Designed for quick experimentation in this environment!

 Flexibility!
▶ Can run Caffe models!
▶ Pre-trained models form Caffe and VGG!

 Efficiency!
▶ Computations are inspired by Berkeley Caffe!
▶ Native MATLAB GPU support!
▶ 60-70% training speed of Caffe (and improving)
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http://www.vlfeat.org/matconvnet
http://VLFeat.org


Compute derivatives using the chain rule

Backpropagation 99

c1 c2 c3 c4 c5 f6 f7 f8 loss

bike

error

w1 w2 w3 w4 w5 w6 w7 w8

ℝx
forward

derror!
dw1

derror!
dw2

derror!
dw3

derror!
dw4

derror!
dw5

derror!
dw6

derror!
dw7

derror!
dw8

backward



A CNN toolbox for MATLAB

MatConvNet

 Forward computation!
▶ operates on a stack of images!
▶ each image has d feature channels 
 
 
 
 
 
 
 

 Available blocks!
▶ convolution, pooling, normalization, loss, ReLU, softmax, dropout!
▶ easily extensible (often directly in MATLAB code)
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vl_nnconvx y

W, b



A CNN toolbox for MATLAB

MatConvNet

 Backward computation!
▶ require network derivatives from block downstream 
 
 
 
 
 

▶ chain rule
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vl_nnconvx
y

W, b

z( ) z 𝜖 ℝ

vl_nnconv
y dz

dy
dz

dx

dz

dW

dz

db



Example

MatConvNet

 % download a pre-trained CNN from the web!
 urlwrite(... !
     'http://www.vlfeat.org/matconvnet/models/imagenet-vgg-f.mat', ...!
     'imagenet-vgg-f.mat') ;!
 net = load('imagenet-vgg-f.mat') ;!
!

 % obtain and preprocess an image!
 im = imread('peppers.png') ;!
 im_ = single(im) ;!
 im_ = imresize(im_, net.normalization.imageSize(1:2)) ;!
 im_ = im_ - net.normalization.averageImage ;!
!

 % run the CNN!
 res = vl_simplenn(net, im_) ;!
!

 % show the classification result!
 scores = squeeze(gather(res(end).x)) ;!
 [bestScore, best] = max(scores) ;!
 figure(1) ; clf ; imagesc(im) ;!
 title(sprintf('%s (%d), score %.3f',...!
    net.classes.description{best}, best, bestScore)) ;
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Wrapping up 103

Representations  
from features

Representations  
from kernels

Representations  
from metric learning

Representations  
from deep learning

Handcrafted

Learned



Wrapping Up

 Represent & predict!
▶ A good representation captures a useful notion of similarity!
▶ Works as a prior in prediction!

 Representations from hand-crafted features!
▶ HOG, BoVW, VLAD, Fisher Vectors!

 Representations from kernels!
▶ Derive implicit and explicit representation from a concept of similarity!

 Representations from metric learning!
▶ Compare & compress with metric learning!

 Representations from deep learning!
▶ Visualisation, transfer learning, feature sharing!
▶ Excellent performance
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