
Andrea Vedaldi

Latest version of the slides  
http://www.robots.ox.ac.uk/~vedaldi/assets/teach/vedaldi16deepcv.pdf

Lab experience 
https://www.robots.ox.ac.uk/~vgg/practicals/cnn-reg/

Convolutional Networks for 

Computer Vision Applications

http://www.robots.ox.ac.uk/~vedaldi/assets/teach/vedaldi16deepcv.pdf
https://www.robots.ox.ac.uk/~vgg/practicals/cnn-reg/

Computer Vision & CNNs

 Image classification

▶ Coarse (high-level objects)

▶ Fine grained (dog, bird species)

 Object detection

▶ R-CNN

▶ Bounding box regression, YOLO

 Image segmentation

▶ Fully-connected networks

▶ U architectures

▶ CRF backprop

 Sentence generation

▶ Recurrent CNNs

▶ LSTMs

 Matching, optical flow, stereo

▶ Siamese architectures

 Synthesis and visualization

▶ Pre-images and matching statistics

▶ Stochastic networks

▶ Adversarial networks

 Pose, parts, key points

 Action recognition

 Attribute prediction

 Depth-map estimation

 Face recognition and verification

 Text recognition and spotting

2

Computer Vision & CNNs

 Image classification

▶ Coarse (high-level objects)

▶ Fine grained (dog, bird species)

 Object detection

▶ R-CNN

▶ Bounding box regression, YOLO

 Image segmentation

▶ Fully-connected networks

▶ U architectures

▶ CRF backprop

 Sentence generation

▶ Recurrent CNNs

▶ LSTMs

 Matching, optical flow, stereo

▶ Siamese architectures

 Synthesis and visualization

▶ Pre-images and matching statistics

▶ Stochastic networks

▶ Adversarial networks

 Pose, parts, key points

 Action recognition

 Attribute prediction

 Depth-map estimation

 Face recognition and verification

 Text recognition and spotting

3

4

Review

c1 c2 c3 c4 c5 f6 f7 f8

w1 w2 w3 w4 w5 w6 w7 w8

bike

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. In Proc. NIPS, 2012.

A sequence of local & shift invariant layers

Convolutional Neural Network (CNN) 5

✱

Example: convolution layer

filter bank Finput data x output data y

 There is a vector of feature channels (e.g. RGB) at each spatial location (pixel).

Data = 3D tensors 6

H

W

=

c = 1 c = 2 c = 3

channels

=3D  
tensor H

C

W

Each filter acts on multiple input channels

Convolution with 3D filters 7

Σ

x y

F
Local 
Filters look locally 
 

 

Translation invariant  
Filters act the same  
everywhere

Multiple filters produce multiple output channels

Filter banks 8

One filter = one output channel

x

Σ

F(1)

Σ

F(2)

y

The basic blueprint of most architectures

Linear / non-linear chains 9

x

Σ

Σ

y

S

S

Σ S …

filtering ReLU filtering 
& downsampling

ReLU …

10

Three years of progress  
 

From AlexNet (2012) to ResNet (2015)

How deep is enough? 11

AlexNet (2012)

5 convolutional layers

3 fully-connected layers

How deep is enough? 12

16 conv layers

AlexNet (2012) VGG-M (2013) VGG-VD-16 (2014)

How deep is enough? 13

AlexNet (2012) VGG-M (2013) VGG-VD-16 (2014) GoogLeNet (2014)

How deep is enough? 14

AlexNet (2012) VGG-M (2013) VGG-VD-16 (2014) GoogLeNet (2014)

How deep is enough? 15

AlexNet (2012)

VGG-M (2013)

VGG-VD-16 (2014)

GoogLeNet (2014)

ResNet 152 (2015)

ResNet 50 (2015)

152 convolutional layers

50 convolutional layers

16 convolutional layers Krizhevsky, I. Sutskever, and G. E. Hinton.

ImageNet classification with deep convolutional

neural networks. In Proc. NIPS, 2012. 

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S.

Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich. Going deeper with

convolutions. In Proc. CVPR, 2015. 

K. Simonyan and A. Zisserman. Very deep

convolutional networks for large-scale image

recognition. In Proc. ICLR, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep

residual learning for image recognition. In Proc.

CVPR, 2016.

3 ⨉ more accurate in 3 years

Accuracy 16

T
o

p
 5

 e
rr

o
r

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

ca
ffe

-a
lex

vg
g-f

vg
g-m

googlenet-d
ag

vg
g-ve

ryd
eep-1

6

re
sn

et-5
0-d

ag

re
sn

et-1
01-d

ag

re
sn

et-1
52-d

ag

M
o

re
 a

c
c
u

ra
te

0.0

0.3

0.7

1.0

1.3

1.6

2.0

2.3

2.6

ca
ffe

-a
lex

vg
g-f

vg
g-m

googlenet-d
ag

vg
g-ve

ryd
eep-1

6

re
sn

et-5
0-d

ag

re
sn

et-1
01-d

ag

re
sn

et-1
52-d

ag

5 ⨉ slower

Speed

 Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers

 Reason: far fewer feature channels (quadratic speed/space gain)

 Moral: optimize your architecture

17

s
p

e
e

d
 (

im
a

g
e

s
/s

 o
n

 T
it
a

n
 X

)

0

100

200

300

400

500

600

700

800

ca
ffe

-a
lex

vg
g-f

vg
g-m

googlenet-d
ag

vg
g-ve

ryd
eep-1

6

re
sn

et-5
0-d

ag

re
sn

et-1
01-d

ag

re
sn

et-1
52-d

ag

S
lo

w
e

r

0.0

0.6

1.3

1.9

2.5

3.1

3.8

4.4

5.0

ca
ffe

-a
lex

vg
g-f

vg
g-m

googlenet-d
ag

vg
g-ve

ryd
eep-1

6

re
sn

et-5
0-d

ag

re
sn

et-1
01-d

ag

re
sn

et-1
52-d

ag

Num. of parameters is about the same

Model size 18

m
o

d
e

l
s
iz

e
 (

M
B

s
)

0

63

125

188

250

313

375

438

500

ca
ffe

-a
lex

vg
g-f

vg
g-m

googlenet-d
ag

vg
g-ve

ryd
eep-1

6

re
sn

et-5
0-d

ag

re
sn

et-1
01-d

ag

re
sn

et-1
52-d

ag

L
a

rg
e

r

0.0

0.8

1.5

2.3

3.0

3.8

4.5

5.3

6.0

ca
ffe

-a
lex

vg
g-f

vg
g-m

googlenet-d
ag

vg
g-ve

ryd
eep-1

6

re
sn

et-5
0-d

ag

re
sn

et-1
01-d

ag

re
sn

et-1
52-d

ag

 Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers

 Reason: far fewer feature channels (quadratic speed/space gain)

 Moral: optimize your architecture

Recent advances 19

Batch normalization

Design guidelines

Residual learning

Recent advances 20

Batch normalization

Design guidelines

Residual learning

 From bottom to top

▶ The spatial resolution H ⨉ W decreases

▶ The number of channels C increases

 Guideline

▶ Avoid tight information bottleneck

▶ Decrease the data volume 
H ⨉ W ⨉ C slowly

Guideline 1: Avoid tight bottlenecks

Design guidelines 21

image

features

K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In Proc.

ICLR, 2015.  

C. Szegedy, V. Vanhoucke, S. Ioffe, and J. Shlens.

Rethinking the inception architecture for computer

vision. In Proc. CVPR, 2016.

Must be large enough

Receptive field

 Receptive field of a neuron

▶ The image region influencing a neuron

▶ Anything happening outside is invisible
to the neuron

 Importance

▶ Large image structures cannot be
detected by neurons with small receptive
fields

 Enlarging the receptive field

▶ Large filters

▶ Chains of small filters

22

neuron’s 
receptive field

“neuron”

Guideline 2: Prefer small filter chains

Design guidelines

 Benefit 1: less parameters, possibly faster

 Benefit 2: same receptive field of big filter

 Benefit 3: packs two non-linearities (ReLUs)

23

5 ⨉ 5 filters  

+ ReLU
3 ⨉ 3 filters  

+ ReLU

prefer

3 ⨉ 3 filters  

+ ReLU

One big filter bank Two smaller filter banks

Guideline 3: Keep the number of channels at bay

Design guidelines 24

 H ⨉ W ⨉ C

 Hf ⨉ Wf ⨉ C ⨉ K

C = num. input channels 

K = num. output channels

Num. of operations

 Num. of parameters

complexity ∝ C ⨉ K

Guideline 4: Less computations with filter groups

Design guidelines 25

split  
channels

filter  
groups

put  
back

M filters G groups of M/G filters

consider  

instead

complexity ∝(C ⨉ K) / G

Guideline 4: Less computations with filter groups

Design guidelines

 Groups = filters, seen as a matrix, have a “block” structure

26

 ⨉ =

xFy

 ⨉ =

xFy

0 0

0

00

0

complexity: C ⨉ K

C ⨉ K

complexity: C ⨉ K / G

Full filters Group-sparse filters

Guideline 5: Low-rank decompositions

Design guidelines

 Make sure to mix the information

27

filter bank  
3 ⨉ 3 ⨉ C ⨉ K

vertical 
1 ⨉ 3 ⨉ C ⨉ K

horizontal 
3 ⨉ 1 ⨉ K ⨉ K

vertical 
1 ⨉ 3 ⨉ K ⨉ K

groups  
3 ⨉ 3 ⨉ C/G ⨉ K/G

“network in network”  
1 ⨉ 1 ⨉ K ⨉ K

decompose  
spatially

decompose  
channels

✱ ✱

✱

Recent advances 28

Batch normalization

Design guidelines

Residual learning

Condition features

Batch normalization

 Standardize the response of each feature channel within the batch

▶ Average over spatial locations

▶ Also, average over multiple images in the batch (e.g. 16-256)

29

batch of 
N tensors

pick feature channel k

mean µk

variance σk

subtract mean & 
divide by variance

compute  
moments

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by  

reducing internal covariate shift. CoRR, 2015

Training vs testing modes

Batch normalization

 Moments (mean & variance)

▶ Training: compute anew for each batch

▶ Testing: fixed to their average values

30

BN

x(3)

x(2)

x(1)

y(3)

y(2)

y(1)

moments 
µ, σ

Training:  
batch-specific 
moment averages 
are collected

Testing: 
moment averages are
used instead  
of batch-specific
moments

Utilization

Batch normalization

 Batch normalization is used after filtering, before ReLU

 It is always followed by channel-specific scaling factor s and bias b

 Noisy bias/variance estimation replaces dropout regularization

31

✱ BN
scale  
bias

xn+3xn+1xn xn+2

ReLU

xn+4

moments 
µ, σ

filters, biases 
F, b

scale, biases 
s, b

Implemented  
a single block in  

MatConvNet

Recent advances 32

Batch normalization

Design guidelines

Residual learning

Fixed identity // learned residual

Residual learning 33

✱ ReLU ✱

xn+3xn+1xn xn+2

ReLU

xn+4

Σ

xn+5

identity residual

ReLU ✱ ReLU Σ ✱ ReLU ✱ ReLU Σ ✱ ReLU ✱ ReLU

K. He, X. Zhang, S.

Ren, and J. Sun.

Deep residual

learning for image

recognition. In Proc.

CVPR, 2016.

Summary

 Impact of deep learning in vision

▶ 2012: amazing results by AlexNet in the ImageNet challenge

▶ 2013-15: massive 3 improvement

▶ 2016-19: further massive improvements not unlikely

 What have we learned

▶ several incremental refinements

▶ AlexNet was just a first proof of concept after all

 Things that work

▶ Deeper architectures

▶ Smarter architectures (groups, low rank decompositions, …)

▶ Batch normalization

▶ Residual connections

34

Semantic segmentation

Label individual pixels

Semantic image segmentation 36

c1 c2 c3 c4 c5 f6 f7 f8

input = image output = image
convolutional fully-connected

Local receptive field

Convolutional layers 37

input  
image

features

receptive field

feature component

Global receptive field

Fully connected layers 38

fully-connected

class predictions

fully-connected

fully-connected

Comparing the receptive fields

Convolutional vs Fully Connected 39

Responses are spatially selective,
can be used to localize things.

Responses are global, do not
characterize well position

Which one is 
more useful for  

pixel level labelling?

Downsampling filters Upsampling filters

Fully-connected layer = large filter 40

F(k)

W ⨉ H ⨉ C

K

w(k)

W ⨉ H ⨉ C ⨉ K

1 ⨉ 1 ⨉ K

✱

=

Fully-convolutional neural networks 41

class predictions

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional models for semantic segmentation. In Proc. CVPR, 2015

Fully-convolutional neural networks

 Dense evaluation

▶ Apply the whole network
convolutional

▶ Estimates a vector of class
probabilities at each pixel

 Downsampling

▶ In practice most network
downsample the data fast

▶ The output is very low resolution
(e.g. 1/32 of original)

42

Interpolating filter

Upsampling the resolution

 Upsampling filters allow to increase the resolution of the output

 Very useful to get full-resolution segmentation results

43

Σ Σ

Downsampling filters Upsampling filters

Or convolution transpose

Deconvolution layer 44

Convolution

✱

F

As matrix multiplication

Banded matrix equivalent to F

Transposed

Transposed matrix

Convolution transpose

✱T

F

From image to image

U-architectures 45

input image
segmentation mask

(output image)

net

net

net

net

net

skip  
layers

Several variants: FCN, U-arch, deconvolution, …

U-architectures 46

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional models for semantic segmentation. In Proc. CVPR, 2015  

H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In Proc. ICCV, 2015  

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In Proc. MICCAI, 2015

copy and crop

input
image

tile

output
segmentation
map

641

128

256

512

1024

max pool 2x2

up-conv 2x2

conv 3x3, ReLU

5
7
2

 x
 5

7
2

2
8
4
²

64

128

256

512

5
7

0
 x

 5
7
0

5
6
8
 x

 5
6
8

2
8

2
²

2
8
0

²
1

4
0

²

1
3

8
²

1
3

6
²

6
8
²

6
6

²

6
4

²
3

2
²

2
8
²

5
6
²

5
4
²

5
2

²

512

1
0
4

²

1
0

2
²

1
0

0
²

2
0
0
²

3
0
²

1
9

8
²

1
9
6
²

3
9
2

 x
 3

9
2

3
9

0
 x

 3
9
0

3
8

8
 x

 3
8

8

3
8
8
 x

 3
8
8

1024

512 256

256 128

64128 64 2

conv 1x1

image pool4 pool5pool1 pool2 pool3

32x upsampled

prediction (FCN-32s)
2x upsampled

prediction

16x upsampled

prediction (FCN-16s)

8x upsampled

prediction (FCN-8s)

pool4

prediction

2x upsampled

prediction

pool3

prediction

P P

Dense networks for semantic segmentation

Try it yourself: MatConvNet-FCN demo 47

sofa

personcat

boat : 0.853 person :0.993

person :0.981

person :0.972

person :0.907

Object detection

Region-based Convolutional Neural Network

R-CNN

Pros: simple and effective  
 

  

 

 

 

 

 

 

Cons: slow as the CNN is re-evaluated for each tested region

49

c5c1 c2 c3 c4 f6 f7 SVM label

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation 
R. Girshick, J. Donahue, T. Darrell, J. Malik, CVPR 2014

CNN chair

background

potted plant

CNN

CNN

http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf

Cut down the number of candidates

Region proposals

 Proposal-method: Selective Search [van de Sande, Uijlings et al.]

▶ hierarchical segmentation

▶ each region generates a ROI

▶ ~ 2000 regions / image

50

Dilate, crop, reshape

From proposals to CNN features 51

Dilate Crop & scale

Anisotropic

227 x 227

Propose

Evaluate CNN

From proposal to CNN features 52

Scale

Anisotropic

227 x 227

c5c1 c2 c3 c4 f6 f7

CNN features

Up to FC-7  

AlexNet

Feature vector

4096 D

Run an SVM or similar on top

Classification of a region 53

Scale

Anisotropic

227 x 227

c5c1 c2 c3 c4 f6 f7

CNN features

Up to FC-7  

AlexNet

Feature vector

4096 D

aeroplane

Label

One out of N

cat

dog

horse

person

…

SVM

old school

Bounding-box regression

Region adjustment 54

Scale

Anisotropic

227 x 227

c5c1 c2 c3 c4 f6 f7

CNN features

Up to FC-7  

AlexNet

Feature vector

4096 D

Box adjustment

dx1, dx2, dy1, dy2

Ridge  
regress.

At the time of introduction (2013)

R-CNN results on PASCAL VOC 55

VOC 2007 VOC 2010

DPM v5 (Girshick et al. 2011) 33.7% 29.6%

UVA sel. search (Uijlings et al. 2013) 35.1%

Regionlets (Wang et al. 2013) 41.7% 39.7%

SegDPM (Fidler et al. 2013) 40.4%

R-CNN (TorontoNet) 54.2% 50.2%

R-CNN (TorontoNet) + bbox regression 58.5% 53.7%

R-CNN (VGG-VD) 62.1%

R-CNN (ONet) + bbox regression 66.0% 62.9%

 Can we achieve end-to-end training?

Region-based Convolutional Neural Network

R-CNN summary 56

image

pertained on ImageNet 
then fine-tuned

trained a-posterioriold school

Ridge  
regression

classimage
SVM  

classifier
CNN  

features
Region  

proposals

box

 End-to-end training

 Except for region proposals

 Problem: this is still pretty slow!

Region-based Convolutional Neural Network

Towards better R-CNNs 57

CNN  
regressor

classimage
CNN  

classifier
CNN  

features
Region  

proposals

box

Accelerating R-CNN 58

c5c1 c2 c3 c4 f6 f7

c5c1 c2 c3 c4 f6 f7

c5c1 c2 c3 c4 f6 f7

chair

background

potted plant

crop

c5c1 c2 c3 c4

f6 f7

f6 f7

f6 f7

chair

background

potted plant

crop

Max pooling in arbitrary regions

The Spatial Pooling layer 59

He, Zhang,Ren & Sun, “Spatial Pyramid Pooling (SPP) in Deep Convolutional Networks for Visual Recognition”, ECCV 2014

any given region

c5c1 c2 c3 c4

feature  
vector

maxpooling

As a building block

The Spatial Pooling layer 60

SP
feature  

map

list of 
regions

region-specific 
feature vectors

He, Zhang,Ren & Sun, “Spatial Pyramid Pooling (SPP) in Deep Convolutional Networks for Visual Recognition”, ECCV 2014

Same as above, but for multiple subdivisions

The Spatially Pyramid Pooling Layer 61

maxpooling

Summary

Fast R-CNN 62

c5c1 c2 c3 c4

f6 f7 chair

selective  
search

SPP
r6 r7 box refinement

f6 f7 background

r6 r7 box refinement

f6 f7 potted plant

r6 r7 box refinement

still not so fast

Ross Girshick. “Fast R-CNN”. ICCV 2015

same  
parameters

Fixed image-independent proposal set

R-CNN minus R

 Fixed proposal generation

▶ Take all bounding box in the training set

▶ Run K-means clustering to distill a few thousands

63

[Lenc Vedaldi BMVC 2015]

all training  
boxes

simplify 
using clustering

~2-3000 representative  
boxes

Matches the training set statistics by construction

Vs other proposal sets 64

ground truth
selective search  

2K
sliding windows 

7K
clustering  

3K

Replace image-specific boxes with a fixed pool

R-CNN minus R 65

c5c1 c2 c3 c4

f6 f7 chair

SPP
r6 r7 box refinement

f6 f7 background

r6 r7 box refinement

f6 f7 potted plant

r6 r7 box refinement

fixed boxes pool

Answer: regression is quite powerful

Why does it work? 66

 Dashed line: initial Solid line: corrected by the CNN

Image-specific vs fixed

Quantitative comparisons

 Selective search is much better than fixed generators

 However, bounding box regression almost eliminates the difference

 Clustering allows to use significantly less boxes than sliding windows

67

m
A

P
 (

V
O

C
0

7
)

0.42

0.4675

0.515

0.5625

0.61

Sel. Search  
(2K boxes)

Slid. Win. 
(7K Boxes)

Clusters 
(2K Boxes)

Clusters 
(7K Boxes)

Baseline BBR

Even better performance with fixed proposals

Faster R-CNN

 Ideas:

▶ Better fixed region proposal sampling

▶ Proposal shape specific classifier / regressors

68

Ren, He, Girshick, & Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”.
NIPS 2015.

3
 s

c
a

le
s

3 aspect ratios

proposals 
prototypes 
(anchors)

together

Even better performance with fixed proposals

Faster R-CNN 69

Ren, He, Girshick, & Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”.
NIPS 2015.

Shape-specific classifiers / regressors

 Model parameters: translation invariant but shape/scale specific

 Object aspects are learned by brute force  

70

f6,1 f7,1

shape

1

r6,1 r7,1

f6,2 f7,2

r6,2 r7,2

shape  

2

shape  

3

f6,3 f7,3

r6,3 r7,3

…

different parameters

Ren, He, Girshick, & Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”.
NIPS 2015.

Based on overlap with ground truth

Training: what is a positive or negative box? 71

treat as 
positive  

 

overlap > 70%

treat as 
negative  

 

overlap < 30%

Ren, He, Girshick, & Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”.
NIPS 2015.

Better, faster!

Fast and Faster R-CNN performance 72

Method Time / image mAP (%)

R-CNN ~50s 66.0

Fast R-CNN ~2s 66.9

Faster R-CNN 198ms 69.9

Detection mAP on PASCAL VOC 2007, with VGG-16 pre-trained on ImageNet.

Three strategies

Multi-scale representations 73

scale image scale feature filters fixed scale features

model parameters shared for all scales 

recompute features for each scale  

cannot exploit fine details when visible

“brute force” modeling of scale  

compute features at a single scale  

can model fine details just fine

Example detections 74

bus: 0.980

car : 1.000

dog : 0.989

person : 0.992

person : 0.974

horse : 0.993

boat : 0.853 person : 0.993

person : 0.981

person : 0.972

person : 0.907

cat : 0.928

dog : 0.983

person : 0.753

Detection challenge comp4: train on own data

PASCAL Leaderboards (Nov 2014) 75

Detection challenge comp4: train on own data

PASCAL Leaderboards (Dec 2015) 76

Part II: A CNN example in text spotting
1.00/1.00/1.00

LORD

NELSON

Other applications

Siamese networks for face recognition/verification

Huge variety of applications

 E.g. VGG-Face

78

same different

Text spotting

Huge variety of applications

 E.g. SynthText and VGG-Text

79

CREAM

http://zeus.robots.ox.ac.uk/textsearch/#/search/

A two-step approach

 We will focus on the “classification” step

 Most previous approaches start by recognising individual characters  
[Yao et al. 2014, Bissacco et al. 2013, Jaderberg et al. 2014, Posner et al. 2010, Quack et al.
2009, Wang et al. 2011, Wang et al. 2012, Weinman et al. 2014, …]

 The alternative is to directly map word images to words  
[Almazan et al. 2014, Goel et al. 2013, Mishra et al. 2012, Novikova et al. 2012, Rodriguez-
Serrano et al. 2012, Godfellow et al. 2013]

80

detection

“APARTMENTS”

classification

A massive classifier

 Goal: map images to one of 90K classes (one per word)  
 

Architecture

▶ each linear operator is followed by ReLU

▶ c1, c2, c3, c5 are followed by 2 ⨉ 2 max pooling

▶ 500 million parameters

▶ evaluation requires 2.2ms on a GPU

81

c1 c2 c3 c4 c5 f6 f7 f8 loss

5 ⨉ 5 

64

5 ⨉ 5 

128

3 ⨉ 3 

256

3 ⨉ 3 

512

3 ⨉ 3 

512

— 

4096

1 ⨉ 1 

4096

1 ⨉ 1 

90,000

32 ⨉ 100 

gray scale

Learning a massive classifier

 Massive training data  
9 million images spanning 90K words (100 examples per word)

 Learning algorithm

▶ SGD

▶ dropout (after fc6 and fc7)

▶ mini batches

 Problem

▶ in practice each batch must contain at least 1/5 of all the classes

▶ batch size = 18K (!!)

 Solution: incremental training

▶ learn first using 5K classes only (1K minibatches)

▶ then incrementally add 5K more classes

82

Synth Text dataset

 Existing text recognition benchmark datasets are too small to train the model

 Synth Text

▶ http://www.robots.ox.ac.uk/~vgg/data/text/

▶ a new synthetic dataset for text spotting

▶ include realistic visual effects

▶ infinity large (9M images available for download)

83

http://www.robots.ox.ac.uk/~vgg/data/text/

Synth Text generation

 Font rendering

▶ sample at random one of 1400

Google Fonts

 Border/shadow

▶ randomly add inset/outset border

and shadow

 Projective distortion

 Blending

▶ use a random crop from SVT as

background

▶ randomly sample alpha channel,

mixing operator (normal, burn, …)

 Noise

▶ elastic distortion, white noise,

blur, JPEG compression, …

84

Overall system

 Proposal generation: edge boxes, AST

 Proposal filtering: HOG, RF

 Bounding box-regression: CNN

 Text recognition: CNN

 Post-processing: merging, non-max.

suppression

85

Qualitative results: text spotting 86

1.00/1.00/1.00
1.00/1.00/1.00

1.00/1.00/1.00

1.00/1.00/1.00

Qualitative results: text spotting 87

1.00/1.00/1.001.00/0.88/0.93

1.00/1.00/1.00

1.00/1.00/1.00

Qualitative results: text retrieval 88

“APARTMENTS” “BORIS JOHNSON” “HOLLYWOOD”

Qualitative results: text retrieval 89

“POLICE” “CASTROL” “VISION”

Backpropagation revisited

Compute derivatives using the chain rule

Backpropagation 91

c1 c2 c3 c4 c5 f6 f7 f8 loss

bike

error

w1 w2 w3 w4 w5 w6 w7 w8

ℝx

forward

derror

dw1

derror

dw2

derror

dw3

derror

dw4

derror

dw5

derror

dw6

derror

dw7

derror

dw8

backward

Chain rule: scalar version 92

f1 f2 fn-1 fn

xnx1

…

x0 xn-1

Chain rule: scalar version 93

xn x1

…

x0xn-1

…

…

A composition of n functions

Derivative ← chain rule

E.g. linear convolution = bank of 3D filters

Tensor-valued functions 94

height width channels instances

input x H W C 1 or N

filters F Hf Wf C K

output y H - Hf + 1 W - Wf + 1 K 1 or N

Vector representation 95

3D tensors

vectors

vec

Derivative of tensor-valued functions 96

Derivative (Jacobian): every output element w.r.t. every input element!

The vec operator  
allows us to use  
a familiar matrix notation  
for the derivatives

Using vec() and matrix notation

Chain rule: tensor version 97

xn x1

…

x0xn-1

…

…

The (unbearable) size of tensor derivatives 98

32 ⨉ 32 ⨉ 512

32 ⨉ 32 ⨉ 512

275 B elements

1 TB of memory 
required !!

The size of these Jacobian matrices is huge. Example:

Unless the output is a scalar 99

Now the Jacobian has the same size as x. Example:

1 ⨉ 1 ⨉ 1

32 ⨉ 32 ⨉ 512

Just 2MB of
memory

524K elements

Scalar

This is always the case  
if the last layer  
is the loss function

Assumed xn is a scalar (e.g. loss)

Backpropagation 100

xn x1

…

x0xn-1

…

…

uber matrices 
do not explicitly compute

small  
explicitly compute

compute this first !

Assumed xn is a scalar (e.g. loss)

Backpropagation 101

xn x1

…

x0xn-1

…

…

uber matrices 
do not explicitly compute

small  
explicitly compute

Assumed xn is a scalar (e.g. loss)

Backpropagation 102

xn x1

…

x0xn-1

uber matrix 
do not explicitly compute

small  
explicitly compute

Assumed xn is a scalar (e.g. loss)

Backpropagation 103

xn x1

…

x0xn-1

small  
explicitly compute

The “BP-transpose” function

Projected function derivative 104

z y x

function  
projected  

onto p projected  
function  

derivative

An “equivalent circuit” is obtained by introducing a transposed function fT

BP induces a “transposed” network

Backpropagation network 105

xn x1

…

x0xn-1

dxn dx1

…
dx0dxn-1

where
Note: the BP network is linear 
in dx1, …, dxn-1,dxn. Why?

BP induces a “transposed” network

Backpropagation network 106

xnx1

…
x0 xn-1

dxndx1

…
dx0 dxn-1

forward

backward

Interpretation of vector-matrix product in BP

Projected function derivative 107

z y x

function  
projected  

onto p

projected  
function  

derivative

Modular: every part can be used directly

Example: MatConvNet 108

Portable  
C++ / CUDA  

Core

Convolution,
pooling,

normalization,
cuDNN, …

 Could be used directly or
in other languages (e.g.

Python or Lua)

Wrappers

SimpleNN

DagNN

 Pack a CNN model  
Simple to use

Building Blocks

vl_nnconv()  

vl_nnpool()  

vl_nnnormalize()  

…

 Atomic operations 
Reusable  
Flexible  

GPU support

Anatomy of a building block 109

vl_nnconv

W, b

x y

 y = vl_nnconv(x, W, b)

 forward (eval)

Anatomy of a building block 110

vl_nnconv

W, b

x
y

z() z � ℝ

 forward (eval)

 y = vl_nnconv(x, W, b)

Anatomy of a building block 111

vl_nnconv

W, b

x
y

 y = vl_nnconv(x, W, b)

z() z � ℝ

vl_nnconv z()

dz

dy
dz

dx

dz

dW

dz

db

 dzdx = vl_nnconv(x, W, b, dzdy)

 backward (backprop)

 forward (eval)

Anatomy of a building block 112

vl_nnconv

W, b

x
y

 y = vl_nnconv(x, W, b)

z() z � ℝ

vl_nnconv z()

dz

dy
dz

dx

dz

dW

dz

db

 dzdx = vl_nnconv(x, W, b, dzdy)

 backward (backprop)

 forward (eval)

Anatomy of a building block

Very fast implementations

Native MATLAB GPU
support

113

vl_nnconv

W, b

x
y

 y = vl_nnconv(x, W, b)

z() z � ℝ

vl_nnconv z()

dz

dy
dz

dx

dz

dW

dz

db

 dzdx = vl_nnconv(x, W, b, dzdy)

 backward (backprop)

 forward (eval)

Summary

 Progress

▶ CNNs are still new, potential still being unveiled

▶ Depth, architectures, batch normalization, residual connections

 Image segmentation

▶ Fully-convolutional nets: a label for each pixel

▶ Deconvolution, U-architectures, skip layers

 Object detection

▶ Region nets: from pixels to a list of objects

▶ R-CNN, Fast R-CNN, R-CNN minus R, Faster R-CNN

 Text spotting

▶ Brute force from synthetic data

 Backpropagation revisited

114

