Convolutional Networks for Computer Vision Applications Andrea Vedaldi

Latest version of the slides http://www.robots.ox.ac.uk/~vedaldi/assets/teach/vedaldi16deepcv.pdf

Lab experience <u>https://www.robots.ox.ac.uk/~vgg/practicals/cnn-reg/</u>

Computer Vision & CNNs

Image classification

- Coarse (high-level objects)
- Fine grained (dog, bird species)

Object detection

- R-CNN
- Bounding box regression, YOLO

Image segmentation

- Fully-connected networks
- U architectures
- CRF backprop

Sentence generation

- Recurrent CNNs
- LSTMs

Matching, optical flow, stereo

Siamese architectures

Synthesis and visualization

- Pre-images and matching statistics
- Stochastic networks
- Adversarial networks

Pose, parts, key points

Action recognition

Attribute prediction

Depth-map estimation

Face recognition and verification

Text recognition and spotting

Computer Vision & CNNs

Image classification

- Coarse (high-level objects)
- Fine grained (dog, bird species)

Object detection

- R-CNN
- Bounding box regression, YOLO

Image segmentation

- Fully-connected networks
- U architectures
- CRF backprop

Sentence generation

- Recurrent CNNs
- LSTMs

Matching, optical flow, stereo

Siamese architectures

Synthesis and visualization

- Pre-images and matching statistics
- Stochastic networks
- Adversarial networks

Pose, parts, key points

Action recognition

Attribute prediction

Depth-map estimation

Face recognition and verification

Text recognition and spotting

Review

A. Krizhevsky, I. Sutskever, and G. E. Hinton. *Imagenet classification with deep convolutional neural networks*. In Proc. NIPS, 2012.

Convolutional Neural Network (CNN)

A sequence of local & shift invariant layers

Example: convolution layer

$$\mathbf{y} = F * \mathbf{x} + b$$

input data **x** filter bank *F* output data **y**

Data = 3D tensors

There is a vector of feature channels (e.g. RGB) at each spatial location (pixel).

Convolution with 3D filters

Each filter acts on multiple input channels

Local Filters look locally

Translation invariant Filters act the same everywhere

Multiple filters produce multiple output channels

One filter = one output channel

Linear / non-linear chains

The basic blueprint of most architectures

filtering ReLU filtering ReLU ... & downsampling

Three years of progress

From AlexNet (2012) to ResNet (2015)

11

AlexNet (2012)

13

14

Accuracy

$3 \times more$ accurate in 3 years

Speed

 $\mathbf{5}\times \mathbf{slower}$

Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers

Reason: far fewer feature channels (quadratic speed/space gain)

Moral: optimize your architecture

17

Model size

Num. of parameters is about the same

Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers

Reason: far fewer feature channels (quadratic speed/space gain)

Moral: optimize your architecture

Recent advances

Design guidelines

Batch normalization

Residual learning

Recent advances

Design guidelines

Batch normalization

Residual learning

Guideline 1: Avoid tight bottlenecks

image

From bottom to top

- ► The *spatial resolution* H × W decreases
- ► The *number of channels C* increases

Guideline

- Avoid tight information bottleneck
- Decrease the data volume H × W × C slowly

K. Simonyan and A. Zisserman. *Very deep convolutional networks for large-scale image recognition*. In Proc. ICLR, 2015.

C. Szegedy, V. Vanhoucke, S. loffe, and J. Shlens. *Rethinking the inception architecture for computer vision*. In Proc. CVPR, 2016.

Receptive field

Must be large enough

neuron's receptive field

Receptive field of a neuron

- ► The image region influencing a neuron
- Anything happening outside is invisible to the neuron

Importance

Large image structures cannot be detected by neurons with small receptive fields

Enlarging the receptive field

- Large filters
- Chains of small filters

Guideline 2: Prefer small filter chains

Benefit 1: less parameters, possibly faster

Benefit 2: same receptive field of big filter

Benefit 3: packs two non-linearities (ReLUs)

Guideline 3: *Keep the number of channels at bay*

Guideline 4: Less computations with filter groups

complexity $\propto (C \times K) / G$

Guideline 4: Less computations with filter groups

Groups = filters, seen as a matrix, have a "block" structure

Guideline 5: Low-rank decompositions

Make sure to mix the information

Recent advances

Design guidelines

Batch normalization

Residual learning

Batch normalization

Condition features

Standardize the response of each feature channel within the batch

- Average over spatial locations
- ► Also, average over multiple images in the batch (e.g. 16-256)

S. loffe and C. Szegedy. *Batch normalization: Accelerating deep network training by reducing internal covariate shift*. CoRR, 2015

Batch normalization

Training vs testing modes

Moments (mean & variance)

- Training: compute anew for each batch
- Testing: fixed to their average values

Batch normalization

Utilization

Batch normalization is used after filtering, before ReLU

It is always followed by channel-specific scaling factor *s* and bias *b*

Noisy bias/variance estimation replaces dropout regularization

Recent advances

Design guidelines

Batch normalization

Residual learning

Residual learning

Fixed identity // learned residual

$$\mathbf{x}_{n+5} = \mathbf{x}_n + (\phi_{\text{ReLU}} \circ \phi_* \circ \phi_{\text{ReLU}} \circ \phi_*)(\mathbf{x}_n)$$

$$\mathbf{f}$$
identity
residual

K. He, X. Zhang, S. Ren, and J. Sun. *Deep residual learning for image recognition*. In Proc. CVPR, 2016.

Summary

Impact of deep learning in vision

- 2012: amazing results by AlexNet in the ImageNet challenge
- 2013-15: massive 3 improvement
- 2016-19: further massive improvements not unlikely

What have we learned

- several incremental refinements
- AlexNet was just a first proof of concept after all

Things that work

- Deeper architectures
- ► Smarter architectures (groups, low rank decompositions, ...)
- Batch normalization
- Residual connections

Semantic segmentation

Semantic image segmentation

Label individual pixels

Convolutional layers

Local receptive field

Fully connected layers

Global receptive field

class predictions

Convolutional vs Fully Connected

Comparing the receptive fields

39

Fully-connected layer = large filter

Fully-convolutional neural networks

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional models for semantic segmentation. In Proc. CVPR, 2015

Fully-convolutional neural networks

Dense evaluation

- Apply the whole network convolutional
- Estimates a vector of class probabilities at each pixel

Downsampling

- In practice most network downsample the data fast
- The output is very low resolution (e.g. 1/32 of original)

Upsampling the resolution

Interpolating filter

Upsampling filters allow to increase the resolution of the output

Very useful to get full-resolution segmentation results

Deconvolution layer

Or convolution transpose

U-architectures

From image to image

U-architectures

Several variants: FCN, U-arch, deconvolution, ...

J. Long, E. Shelhamer, and T. Darrell. *Fully convolutional models for semantic segmentation*. In Proc. CVPR, 2015 H. Noh, S. Hong, and B. Han. *Learning deconvolution network for semantic segmentation*. In Proc. ICCV, 2015 O. Ronneberger, P. Fischer, and T. Brox. *U-net: Convolutional networks for biomedical image segmentation*. In Proc. MICCAI, 2015

Try it yourself: MatConvNet-FCN demo

Dense networks for semantic segmentation

Object detection

R-CNN

Region-based Convolutional Neural Network

Pros: simple and effective

Cons: slow as the CNN is re-evaluated for each tested region

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation R. Girshick, J. Donahue, T. Darrell, J. Malik, CVPR 2014

Region proposals

Cut down the number of candidates

Proposal-method: Selective Search [van de Sande, Uijlings et al.]

- hierarchical segmentation
- each region generates a ROI
- ~ 2000 regions / image

From proposals to CNN features

Dilate, crop, reshape

Propose

Dilate

Crop & scale Anisotropic 227 x 227

51

From proposal to CNN features

Evaluate CNN

Scale Anisotropic 227 x 227

CNN features

Up to FC-7 AlexNet

Feature vector 4096 D

Classification of a region

Run an SVM or similar on top

CNN features

Up to FC-7 AlexNet Feature vector 4096 D Label One out of *N*

Region adjustment

Bounding-box regression

CNN features

Up to FC-7 AlexNet Feature vector 4096 D Box adjustment dx1, dx2, dy1, dy2

R-CNN results on PASCAL VOC

At the time of introduction (2013)

	VOC 2007	VOC 2010
DPM v5 (Girshick et al. 2011)	33.7%	29.6%
UVA sel. search (Uijlings et al. 2013)		35.1%
Regionlets (Wang et al. 2013)	41.7%	39.7%
SegDPM (Fidler et al. 2013)		40.4%
R-CNN (TorontoNet)	54.2%	50.2%
R-CNN (TorontoNet) + bbox regression	58.5%	53.7%
R-CNN (VGG-VD)	62.1%	
R-CNN (ONet) + bbox regression	66.0%	62.9%

R-CNN summary

Region-based Convolutional Neural Network

Can we achieve end-to-end training?

Towards better R-CNNs

Region-based Convolutional Neural Network

End-to-end training

Except for region proposals

Problem: this is still pretty slow!

Accelerating R-CNN

The Spatial Pooling layer

Max pooling in arbitrary regions

He, Zhang, Ren & Sun, "Spatial Pyramid Pooling (SPP) in Deep Convolutional Networks for Visual Recognition", ECCV 2014

The Spatial Pooling layer

As a building block

He, Zhang, Ren & Sun, "Spatial Pyramid Pooling (SPP) in Deep Convolutional Networks for Visual Recognition", ECCV 2014

The Spatially *Pyramid* Pooling Layer

Same as above, but for multiple subdivisions

Fast R-CNN

R-CNN minus R

Fixed image-independent proposal set

Fixed proposal generation

- ► Take all bounding box in the training set
- Run K-means clustering to distill a few thousands

[Lenc Vedaldi BMVC 2015]

Vs other proposal sets

Matches the training set statistics by construction

R-CNN minus R

Replace image-specific boxes with a fixed pool

Why does it work?

Answer: regression is quite powerful

Dashed line: initial

Solid line: corrected by the CNN

Quantitative comparisons

Image-specific vs fixed

Selective search is much better than fixed generators

However, bounding box regression almost eliminates the difference

Clustering allows to use significantly less boxes than sliding windows

Faster R-CNN

Even better performance with fixed proposals

Ideas:

- Better fixed region proposal sampling
- Proposal shape specific classifier / regressors

Ren, He, Girshick, & Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

Faster R-CNN

Even better performance with fixed proposals

Ren, He, Girshick, & Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

Shape-specific classifiers / regressors

Model parameters: translation invariant but shape/scale specific

Object aspects are learned by brute force

Ren, He, Girshick, & Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

Training: what is a positive or negative box?

71

Based on overlap with ground truth

Ren, He, Girshick, & Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

Fast and Faster R-CNN performance

Better, faster!

Method	Time / image	mAP (%)
R-CNN	~50s	66.0
Fast R-CNN	~2s	66.9
Faster R-CNN	198ms	69.9

Detection mAP on PASCAL VOC 2007, with VGG-16 pre-trained on ImageNet.
Multi-scale representations

Three strategies

Example detections

PASCAL Leaderboards (Nov 2014)

Detection challenge comp4: train on own data

Aver	age Precision (AP %)																						
		mean	aero plane	bicycle	bird	boat	bottle	bus	car	cat	chair	cow	dining table	dog	horse	motor bike	person	potted plant	sheep	sofa	train	tv/ monitor	submission date
		-	\bigtriangledown																				
	NUS_NIN_c2000 [?]	63.8	80.2	73.8	61,9	43,7	43.0	70.3	67.6	80.7	41.9	69.7	51.7	78.2	75.2	76.9	65.1	38.6	68.3	58.0	68.7	63.3	30-Oct-2014
	BabyLearning [?]	63.2	78.0	74.2	61.3	45.7	42.7	68.2	66.8	80.2	40.6	70.0	49.8	79.0	74.5	77.9	64.0	35.3	67.9	55.7	68.7	62.6	12-Nov-2014
\triangleright	R-CNN (bbox reg) [?]	62.4	79.6	72.7	61.9	41.2	41.9	65.9	66.4	84.6	38.5	67.2	46.7	82.0	74.8	76.0	65.2	35.6	65.4	54.2	67.4	60.3	26-Oct-2014
	NUS_NIN [?]	62.4	77.9	73.1	62.6	39.5	43.3	69.1	66.4	78.9	39.1	68.1	50.0	77.2	71.3	76.1	64.7	38.4	66.9	56.2	66.9	62.7	30-Oct-2014
	R-CNN [?]	59.2	76.8	70.9	56.6	37.5	36.9	62.9	63.6	81.1	35.7	64.3	43.9	80.4	71.6	74.0	60.0	30.8	63,4	52.0	63.5	58.7	25-Oct-2014
\triangleright	Feature Edit [?]	56.3	74.6	69.1	54.4	39.1	33.1	65.2	62.7	69.7	30.8	56.0	44.6	70,0	64.4	71.1	60,2	33,3	61.3	46,4	61.7	57.8	06-Sep-2014
D	R-CNN (bbox reg) [?]	53.3	71.8	65.8	52,0	34.1	32.6	59.6	60.0	69.8	27.6	52.0	41.7	69.6	61.3	68.3	57,8	29.6	57.8	40.9	59,3	54.1	13-Mar-2014
	SDS [7]	50.7	69.7	58,4	48.5	28.3	28.8	61.3	57.5	70.8	24.1	50.7	35.9	64.9	59.1	65.8	57.1	26.0	58.8	38.6	58.9	50.7	21-Jul-2014
	R-CNN [7]	49.6	68.1	63.8	46.1	29.4	27.9	56.6	57.0	65.9	26.5	48,7	39.5	66.2	57.3	65.4	53.2	26.2	54.5	38.1	50.6	51.6	30-Jan-2014
\triangleright	Poselets2 [?]	2	4	2	6	a 162	- 22	1 54	< 82	12	12	1	i iz	1	5 82	1	58.7	22	22	12	14	05	06-Jun-2014

PASCAL Leaderboards (Dec 2015)

Detection challenge comp4: train on own data

		mean	aero	bicycle	bird	boat	bottle	bus	car	cat	chair	cow	dining table	dog	horse	motor	person	potted	sheep	sofa	train	tv/ monitor	submission date
		-	\bigtriangledown	∇	\bigtriangledown	∇	\bigtriangledown																
	Faster RCNN, ResNet (VOC+COCO) [2]	83.8	92.1	88.4	84.8	75.9	71.4	86.3	87.8	94.2	66.8	89.4	69.2	93.9	91.9	90.9	89.6	67.9	88.2	76.8	90.3	80.0	10-Dec-2015
	10N [?]	76.4	87.5	84.7	76.8	63.8	58.3	82.6	79.0	90.9	57.8	\$2.0	64.7	88.9	86.5	84.7	82.3	51.4	78.2	69.2	85.2	73.5	23-Nov-2015
	MNC baseline [?]	75.9	85.4	81.1	76,4	64.3	57.8	81.1	60.3	92.0	55.2	82.6	61.0	89.9	86.4	84.6	85.4	53.1	79.8	66.1	84.7	69.9	15-Dec-2015
>	Faster RCNN baseline (VOC+COCO) [?]	75.9	87.4	83.6	76.8	62.9	59.6	61.9	82.0	91,3	54.9	82.6	59.0	89.0	85.5	84.7	64,1	52.2	78.9	65.5	85.4	70,2	24-Nov-2015
	LocNet [?]	74.8	86.3	83.0	76.1	60.8	54.6	79.9	79.0	90.6	54.3	81.6	62.0	89.0	85,7	85.5	82.8	49.7	76.6	67.5	83.2	67.4	06-Nov-2015
	** HRCNN ** [?]	74.6	85.9	83.9	75.5	60.9	54.5	51.4	79.1	90.6	53.3	79.7	61.6	89.9	86.2	85.8	75.2	49,1	75.1	68.6	85.1	67.7	13-Nov-2015
>	MR_CNN_S_CNN_MORE_DATA [?]	73.9	85.5	82.9	76.6	57.8	62.7	79.4	77.2	86.6	55.0	79.1	62.2	87.0	83.4	84.7	78.9	45.3	73.4	65.8	80.3	74.0	06-Jun-2015
	HyperNet_VGG [?]	71,4	84.2	78.5	73.6	55.6	53.7	78,7	79.8	87.7	49.6	74.9	52.1	\$5.0	81.7	83.3	\$1.8	48.6	73.5	59,4	79.9	65.7	12-Oct-2015
>	HyperNet_SP [7]	71.3	84,1	78.3	73,3	55.5	53.6	78.6	79.6	67.5	49.5	74.9	52.1	85.6	81.6	83,2	81,6	48.4	73.2	59.3	79,7	65.6	28-Oct-2015
	Fast R-CNN + YOLO [?]	70.7	83.4	78.5	73.5	55.8	43.4	79,1	73.1	89.4	49,4	75.5	57.0	87.5	80.9	81.0	74.7	41.8	71.5	68.5	82.1	67,2	06-Nov+2015
	MR_CNN_S_CNN [?]	70.7	85.0	79.6	71.5	55.3	57.7	76.0	73.9	84.6	50.5	74.3	61.7	85.5	79.9	81.7	76.4	41.0	69.0	61.2	77.7	72.1	09-May-2015
	RPN [?]	70.4	84,9	79.8	74,3	53.9	49.8	77.5	75.9	88.5	45.6	77.1	55.3	86.9	81.7	80.9	79.6	40.1	72.6	60.9	81.2	61.5	01-Jun-2015
>	DEEP_ENSEMBLE_COCO [7]	70.1	84,0	79.4	71.6	51.9	51,1	74.1	72.1	88.6	48.3	73.4	57.8	86.1	80.0	80.7	70.4	46.6	69.6	68.8	75,9	71,4	03-May-2015
	Networks on Convolutional Feature Maps [?]	68.8	82.8	79.0	71,6	52.3	53.7	74.1	69.0	84,9	46.9	74.3	53.1	85.0	81.3	79.5	72.2	38.9	72.4	59.5	76.7	68.1	17-Apr-2015
>	Fast R-CNN VGG16 extra data [?]	68,4	62.3	78.4	70.8	52,3	38.7	77.8	71.6	89.3	44.2	73.0	55.0	\$7,5	80,5	80,8	72.0	35,1	68.3	65.7	80.4	64.2	17-Apr-2015
>	UMICH FGS STRUCT [?]	66.4	82.9	76.1	64.1	44.6	49.4	70.3	71.2	84.6	42.7	68,6	55.8	82.7	77.1	79.9	68.7	41.4	69.0	60.0	72.0	66.2	20-Jun-2015
	NUS NIN (2000 [?]	63.8	80,2	73.8	61.9	43.7	43.0	70.3	67.6	80.7	41.9	69.7	51.7	78.2	75.2	76.9	65.1	38.6	68.3	58.0	68.7	63.3	30-Oct-2014
>	BabyLearning [?]	63.2	78.0	74.2	61.3	45.7	42.7	68.2	66.8	80.2	40.6	70.0	49.8	79.0	74.5	77.9	64.0	35.3	67.9	55.7	68.7	62.6	12-Nov-2014
	NUS NIN [7]	62.4	77.9	73.1	62.6	39,5	43.3	69,1	66,4	78.9	39,1	68.1	50.0	77.2	71.3	76.1	64.7	38.4	66.9	56,2	65.9	62.7	30-Oct-2014
	R-CNN (bbox reg) [?]	62.4	79.6	72.7	61.9	41.2	41.9	65.9	66.4	84.6	38.5	67.2	46.7	82.0	74.8	76.0	65.2	35.6	65.4	54.2	67.4	60.3	26-Oct-2014
	R-CNN [7]	59.2	76.8	70.9	56.6	37.5	36.9	62.9	63.6	81.1	35.7	64.3	43.9	80.4	71.6	74.0	60.0	30.8	63.4	52.0	63.5	58.7	25-Oct-2014
	A Second s		-	785	1112	-		10000		and the second	-		-	100	-	Calent	1000	- 7.1.75	1.5700.0	and the	1000	1000	and the second sec

Other applications

Huge variety of applications

Siamese networks for face recognition/verification

Huge variety of applications

Text spotting

E.g. SynthText and VGG-Text

http://zeus.robots.ox.ac.uk/textsearch/#/search/

A two-step approach

We will focus on the "classification" step

Most previous approaches start by recognising individual characters

[Yao et al. 2014, Bissacco et al. 2013, Jaderberg et al. 2014, Posner et al. 2010, Quack et al. 2009, Wang et al. 2011, Wang et al. 2012, Weinman et al. 2014, ...]

The alternative is to directly map word images to words

[Almazan et al. 2014, Goel et al. 2013, Mishra et al. 2012, Novikova et al. 2012, Rodriguez-Serrano et al. 2012, **Godfellow et al. 2013**]

A massive classifier

Goal: map images to one of 90K classes (one per word)

Architecture

- each linear operator is followed by ReLU
- ▶ c_1 , c_2 , c_3 , c_5 are followed by 2×2 max pooling
- ► 500 million parameters
- evaluation requires 2.2ms on a GPU

Learning a massive classifier

Massive training data

9 million images spanning 90K words (100 examples per word)

Learning algorithm

- ► SGD
- dropout (after fc₆ and fc₇)
- mini batches

Problem

- ▶ in practice each batch must contain at least 1/5 of all the classes
- ▶ batch size = 18K (!!)

Solution: incremental training

- learn first using 5K classes only (1K minibatches)
- then incrementally add 5K more classes

Synth Text dataset

Existing text recognition benchmark datasets are too small to train the model

Synth Text

- http://www.robots.ox.ac.uk/~vgg/data/text/
- a new synthetic dataset for text spotting
- include realistic visual effects
- infinity large (9M images available for download)

Synth Text generation

Font rendering

 sample at random one of 1400 Google Fonts

Border/shadow

randomly add inset/outset border and shadow

Projective distortion

Blending

- use a random crop from SVT as background
- randomly sample alpha channel, mixing operator (normal, burn, ...)

Noise

elastic distortion, white noise, blur, JPEG compression, ...

Overall system

Proposal generation: edge boxes, AST

Proposal filtering: HOG, RF

Bounding box-regression: CNN

Text recognition: CNN

Post-processing: merging, non-max. suppression

Qualitative results: text spotting

1.00/1.00/1.00

1.00/1.00/1.00

CHEURRONT 200

1.00/1.00/1.00

Qualitative results: text spotting

1.0/1.00/1.00

1.00/0.88/0.93

1.00/1.00/1.00

Qualitative results: text retrieval

"APARTMENTS"

BORIS JOHNSON

"HOLLYWOOD"

Qualitative results: text retrieval

"POLICE"

"CASTROL"

"VISION"

Backpropagation revisited

Compute derivatives using the chain rule

Chain rule: scalar version

Chain rule: scalar version

A composition of *n* functions

Derivative ← chain rule

Tensor-valued functions

E.g. linear convolution = bank of 3D filters

$$\mathbf{y} = F * \mathbf{x} + b$$

	height	width	channels	instances
input x	Н	W	С	1 or N
filters F	Hf	W_{f}	С	K
output y	H - H _f + 1	W - W _f + 1	K	1 or N

Vector representation

Derivative of tensor-valued functions

Derivative (Jacobian): every output element w.r.t. every input element!

Chain rule: tensor version

Using vec() and matrix notation

The (unbearable) size of tensor derivatives

The size of these Jacobian matrices is **huge**. Example:

Unless the output is a scalar

Now the Jacobian has the same size as **x**. Example:

Projected function derivative

The "BP-transpose" function

An "equivalent circuit" is obtained by introducing a transposed function f^T

Backpropagation network

BP induces a "transposed" network

where
$$d\mathbf{x}_i = \frac{df_n \circ \cdots \circ f_{i+1}}{d \operatorname{vec} \mathbf{x}_i}$$

Note: the BP network is linear in $d\mathbf{x}_1, ..., d\mathbf{x}_{n-1}, d\mathbf{x}_n$. Why?

Backpropagation network

BP induces a "transposed" network

forward

backward

Projected function derivative

Interpretation of vector-matrix product in BP

Example: MatConvNet

Modular: every part can be used directly

Could be used directly or in other languages (e.g. Python or Lua) Atomic operations Reusable Flexible GPU support Pack a CNN model Simple to use
forward (eval)

 $y = vl_nnconv(x, W, b)$

$$y = vl_nnconv(x, W, b)$$

backward (backprop)

 $dzdx = vl_nnconv(x, W, b, dzdy)$

Very fast implementations

Native MATLAB GPU support

Summary

Progress

- CNNs are still new, potential still being unveiled
- Depth, architectures, batch normalization, residual connections

Image segmentation

- Fully-convolutional nets: a label for each pixel
- Deconvolution, U-architectures, skip layers

Object detection

- Region nets: from pixels to a list of objects
- R-CNN, Fast R-CNN, R-CNN minus R, Faster R-CNN

Text spotting

Brute force from synthetic data

Backpropagation revisited