(Somewhat) Advanced

Convolutional Neural Networks
Andrea Vedaldi

Medical Imaging Summer School

August 2016

UNIVERSITY OF

OXFORD



Image representations

encoder © representation
> O(x) € R?

An encoder maps the data into a vectorial representation

Facilitate labelling of images, text, sound, videos, ...



representation learned

—l

handcrafted — » i
predictor
features

handcrafted kernel
features | embedding —

handcrafted kernel metric
| o »

features embedding learning

deep learning »




representation learned

P—— N,

deep learning




Understanding visual representations

Modern convolutional neural networks

Applications

Segmentation: “fully convolutional” networks

Object detection: R-CNN and weak supervision



Understanding visual representations

Modern convolutional neural networks

Applications

Segmentation: “fully convolutional” networks

Object detection: R-CNN and weak supervision



| neural networks

iona

Convolut

-60)

Origin (1950




Perceptron
[Rosenblatt 57]

The goal is estimating the posterior probability of the binary label y of a vector x:

linear
weighting
1 b accumulation non-linear
activation
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Discovery of oriented cells in the visual cortex
[Hubel and Wiesel 59]
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Data = 3D tensors

There is a vector of feature channels (e.g. RGB) at each spatial location (pixel).

channels
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Linear convolution

As a neural network

N
f
X2 O 2 —> Z —> S _’O
é}f/'\ J \ y
XD
lattice
structure
e - ~
O Fa > pO
\_ Y,
multiple
feature channels X
r N
> pO
\_ Y,

local and translation
invariant action




Deep architectures

Repeat linear / non-linear operators
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Components of deep architectures

linear 3D filters
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Modern convolutional networks

From AlexNet (2012) to ResNet (2015)

WILLYS MOTORS INC. TOLEDO 1, OHIO



Modern convolutional nets
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[AlexNet by Krizhevsky et al. 2012]

Excellent performance in image Millions of parameters learned from
understanding tasks data

Learn a sequence of general-purpose The “meaning” of the representation is
representations unclear



How deep is deep enough?

AlexNet (2012)

h

5 convolutional layers

Iy

3 fully-connected layers
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How deep is deep enough?

AlexNet (2012) VGG-M (2013) VGG-VD-16 (2014)
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How deep is deep enough?

AlexNet (2012) VGG-M (2013) VGG-VD-16 (2014) GoogleNet (2014)
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How deep is deep enough?

GooglLeNet (2014)
VGG-VD-16 (2014)

VGG-M (2013)
AlexNet (2012)

16 convolutional layers

50 convolutional layers

152 convolutional layers

ResNet 50 (2015)
ResNet 152 (2015)

Krizhevsky, I. Sutskever, and G. E. Hinton.
ImageNet classification with deep convolutional
neural networks. In Proc. NIPS, 2012.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S.
Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. Going deeper with
convolutions. In Proc. CVPR, 2015.

K. Simonyan and A. Zisserman. Very deep
convolutional networks for large-scale image
recognition. In Proc. ICLR, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep
residual learning for image recognition. In Proc.
CVPR, 2016.



Top 5 error

Accuracy

3 X more accurate in 3 years
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speed (images/s on Titan X)

Speed

5 x slower
800 5.0
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500 _ 3.1
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Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers
Reason: far fewer feature channels (quadratic speed/space gain)

Moral: optimize your architecture



model size (MBs)

Model size

Num. of parameters is about the same

500 6.0
438 53
375 4.5
313 _ 38
S
250 = 3.0
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0 0.0
Y X
’,O\G‘I‘ QQ q((\ ,e}‘bg ;\6 ,&‘Q d’bg 6"9 . @\@‘I‘ gg q((\ d,og ’»\Q) ,d(oq d(bg e},&g
4@ © (\6\ ceeQ o A R @ © QG\ X O K A R
c® NN SR S VAN c® NS SR S VAN Y
% @ AN ¥ @ 2 &9 ¥
O ¥ Y @ e QT ¥ Y @ e

Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers
Reason: far fewer feature channels (quadratic speed/space gain)

Moral: optimize your architecture
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Design guidelines
Guideline 1: Avoid tight bottlenecks

From bottom to top
features

-

» The spatial resolution H x W decreases

» The number of channels C increases

Guideline
» Avoid tight information bottleneck

» Decrease the data volume
Hx W x C slowly

--------------------------------------------------------
.
[
R
.
.

K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In Proc.
ICLR, 2015.

C. Szegedy, V. Vanhoucke, S. loffe, and J. Shlens.
Rethinking the inception architecture for computer
vision. In Proc. CVPR, 2016.

Image



Receptive field

Eventually, it must be large enough

) ] Receptive field of a neuron
neuron

» The image region influencing a neuron

r ° » Anything happening outside is invisible
; to the neuron

Importance

» Large image structures cannot be
detected by neurons with small receptive
fields

Obtaining large receptive fields

'“/ —_— % » Large filters

» Chains of small filters

neuron’s
receptive field



Design guidelines

Guideline 2: Prefer small filter chains

One big filter bank Two smaller filter banks

~
~
...............

..........
-

_____
- -
—————
z

N W W VAN

LN N N VAN

AN N N N

5 x 5 filters 3 x 3filters 3 x 3 filters
+ RelLLU + RelLU + RelLU

Benefit 1: less parameters, possibly faster
Benefit 2. same receptive field of a bigger filter

Benefit 3: packs two non-linearities (ReLLUs)




Design guidelines

Guideline 3: Keep the number of channels at bay

Num. of operations

Hx Wx C x| — X [— | |Y Hx Hf W x We
: X : x Cx K
A stride stride a—
F 90909949
Hix Wix CX K
- Num. of parameters
N
C = num. input channels —T He x We x C X K
K = num. output channels

complexity &x Cx K



Design guidelines

Guideline 4: Less computations with filter groups

M filters G groups of M/G filters

b consider
At instead

split filter put
channels groups back

complexity < (C x K)/ G




Design guidelines

Guideline 4: Less computations with filter groups

Full filters Group-sparse filters
- - _ ; ; -
= Cx K X =10 0
0 0
) F ) X y ) F )
complexity: C x K complexity: Cx K/ G

Groups = filters, seen as a matrix, have a “block” structure




d
L~
L~
d

filter bank
3IX3XCxK

Design guidelines

Guideline 5: Low-rank decompositions

decompose A =
spatially |k X |
vertical horizontal vertical
1 X3XCXK 3IX1XKx K 1 X3X KX K
e
/ >
L
/// /// *
decompose PINNS
channels vd e
//
groups “network in network”
3xXx3X CGXxKG 1 X T1TXKXK

Make sure to mix the information
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Residual learning



Batch normalization

Better condition features

pick feature channel k

batchof -~  _~Z compute
N tensors - moments

) ™) | mean px«

<—__/ variance ok

subtract mean &

___________________________________ divide by variance

Standardize the response of each feature channel within the batch
» Average over spatial locations

» Also, average over multiple images in the batch (e.g. 16-256)

S. loffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, 2015



Batch normalization

Training vs testing modes

x(3)
X(2) BN
x(1)
L~ g
Training: <>
batch-specific moments

moment averages
are collected

Y, o
Moments (mean & variance)

» Training: compute anew for each batch

» Testing: fixed to their average values

Testing:

moment averages are
used instead

of batch-specific
moments



Batch normalization

Utilization

Xn Xn+4
O— % : ReLU —>O
‘
| | ] Implemented
filters, biases i moments a single block in
F, b ? " —— MatConvNet

Batch normalization is used after filtering, before ReLU
It is always followed by channel-specific scaling factor s and bias b

Noisy bias/variance estimation replaces dropout regularization



Recent advances

Design guidelines

Batch normalization

Residual learning



Residual learning

Xn+5 — Xp + (¢ReLU O ¢>|< O ¢ReLU O ¢*)(xn)

Hardwired identity in parallel with a learned residual transformation

K. He, X. Zhang, S.
Ren, and J. Sun.
Deep residual
learning for image
recognition. In Proc.

. : : CVPR, 2016.
identity residual
Xn Xn+1 Xn+2 Xn+3 Xn+4 Xn+5
—>0O—> —>(O—> RelU —>O—> —>(O—>( RelLU —>O—> 2 —>(O—
LU PO ReLlU PO> 2 PO Kk PO>| ReLU PO> >0>| ReLU O3 > PO>| 5k PO>| RelU PO K PO>| Re




Deep nets in vision: 2012-2015

Impact of deep learning in vision

> amazing results by AlexNet in the ImageNet challenge
> massive 3x improvement
> more improvements?

What have we learned
» Several over the base AlexNet

» There is still space for improvements to the base model

Things that work
» Deeper architectures
» Smarter architectures (groups, low rank decompositions, ...)
» Batch normalization

» Residual connections
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Modern convolutional neural networks

Applications

Segmentation: “fully convolutional” networks

Object detection: R-CNN and weak supervision



Applications
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Semantic image segmentation

Label individual pixels




Face analysis

Detection, verification, recognition, emotion, 3D fitting

same different

E.g. VGG-Face



Text spotting

Detection, word recognition, character recognition

E.g. SynthText and VGG-Text

http://zeus.robots.ox.ac.uk/textsearch/#/search/



Object detection

Extract individual object instances

boat : 0.853

. , {‘-‘-b
«.-.;-- ,_f.: =
e —
- *-

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
R. Girshick, J. Donahue, T. Darrell, J. Malik, CVPR 2014



http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf

Understanding visual representations

Modern convolutional neural networks

Applications

Segmentation: “fully convolutional” networks

Object detection: R-CNN and weak supervision



Semantic segmentation

SKy
Building
Window

DOoor



Semantic image segmentation

Label individual pixels

building building
£rass
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Convolutional layers

Local receptive field

feature component ‘—F}’T‘ features
I

] iInput
|/ '- Z image

receptive field




Fully connected layers

Global receptive field

class predictions
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Convolutional vs fully connected

Comparing the receptive fields

Downsampling filters Upsampling filters
Responses are spatially selective, Responses are global, do not
can be used to localize things. characterize well position.

Which one is
. more useful for |
i pixel level labelling? §




Fully-connected = very large filter

“FC” is just a name for a particular filter configuration

1x1xK

r F (k)

Wx Hx Cx K




Fully-convolutional neural networks

class predictions

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional models for semantic segmentation. In Proc. CVPR, 2015



Fully-convolutional neural networks

Dense evaluation Downsampling
» Apply the whole network » In practice most network
convolutional downsample the data fast
» Estimates a vector of class » The output is very low resolution

probabilities at each pixel (e.g. 1/32 of original)



Upsampling the result

Interpolating filter

Downsampling filters Upsampling filters

Upsampling filters allow to increase the resolution of the output

Very useful to get full-resolution segmentation results




Convolution

Deconvolution layer

Or convolution transpose

X 9 *

—

—)g — vecy |:| — [ ]x VeC X

F

Convolution transpose

ge

X' >

—

As matrix multiplication

Banded matrix equivalentto F

\A

Transposed

vecy

[re— ﬁ

p— X |:| VEC X

— a

Transposed matrix



U-architectures

From image to image

> net \L

segmentation mask

Input image (output image)



U-architectures

Several variants: FCN, U-arch, deconvolution, ...

64 64
128 64 64 2
input
; output
Image (| .
t%e N : : : segmentation
32x upsampled 2x upsampled 16x upsampled 2x upsampled 8x upsampled | & & 8 map
prediction (FCN-32s)  prediction  prediction (FCN-16s)  prediction prediction (FCN-8s) ol el s N
A sl & & &
N Of ©
~[ =} ©
w| L w
* ' 128 128
image pooll pool2 pool3 poold poolb pool4 S pool3 .. 256 128
prediction 4 prediction A
/
/ =)
—_— ' S Sl S i< % §
_________________ QULWE
____________________________________ ‘ t
e 256 256 512 256
q =»conv 3x3, ReLU
s 4 copy and crop

¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

224x224 224x224

Unpooling
\Enpooling

\Linpooling

\anc;ol_ing

~

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional models for semantic segmentation. In Proc. CVPR, 2015
H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In Proc. ICCV, 2015
O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In Proc. MICCAI, 2015
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Object detection

boat : 0853

i

person :0.972
person :0.981




Detections with conv nets

Region-based Convolutional Neural Network (R-CNN)

Pros: simple and effective

(= BT cner
»: BT beckgrouna
[ IETI) potted plant

Cons: slow as the CNN is re-evaluated for each tested region

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

R. Girshick, J. Donahue, T. Darrell, J. Malik, CVPR 2014


http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf

Region proposals

Cut down the number of candidates

Proposal-method: Selective Search [van de Sande, Uijlings et al.]
» hierarchical segmentation
» each region generates a ROI

» ~ 2000 regions / image



From proposals to CNN features

Dilate, crop, reshape

Propose Dilate Crop & scale
Anisotropic
227 x 227



From proposals to CNN features
Evaluate CNN

)

Scale CNN features Feature vector
Anisotropic Up to FC-7 4096 D
227 x 227 AlexNet



Classification of a region

Run an SVM or similar on top

aeroplane
old school

\

cat

dog

horse

( person )

Scale CNN features Feature vector Label
Anisotropic Up to FC-7 4096 D One out of N
227 x 227 AlexNet



Region adjustment

Bounding-box regression

R st
Ridge "3
Cif{C2l{CsficafCs | f6 f7 9 &1l
regress. ¢}

Scale CNN features Feature vector Box adjustment
Anisotropic Up to FC-7 4096 D dx1, dx2, dy1, dy2
227 x 227 AlexNet




Training: what is a positive or negative box?

Based on overlap with ground truth

reat - 1 : treat as
reat as | i . nhegative

. i
positive =

— -

oo ' g ~ overlap <30%

overlap > 70% :

- el

e

Ren, He, Girshick, & Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”.
NIPS 2015.



R-CNN results on PASCAL VOC

At the time of introduction (2013)

DPM v5 (Girshick et al. 2011)

UVA sel. search (Uijlings et al. 2013)

Regionlets (Wang et al. 2013)
SegDPM (Fidler et al. 2013)

R-CNN (TorontoNet)

R-CNN (TorontoNet) + bbox regression

R-CNN (VGG-VD)
R-CNN (ONet) + bbox regression

33.7%

41.7%

54.2%
58.5%
62.1%
66.0%

29.6%
35.1%
39.7%
40.4%
50.2%
53.7%

62.9%



R-CNN summary

Region-based Convolutional Neural Network

old sc:hool--~-\}k W trained a-posteriori

Region CNN SVM
proposals features classifier

Image

Ridge
regression

pertained on ImageNet
then fine-tuned

Can we achieve end-to-end training?



Towards better R-CNNs

Region-based Convolutional Neural Network

Region CNN CNN
proposals features classifier

CNN
regressor

End-to-end training
Except for region proposals

Problem: this is still pretty slow!

>
D



Accelerating R-CNN

chair

background

potted plant

chair

background

potted plant



The Spatial (Pyramid) Pooling layer

Max pooling in arbitrary regions

feature

any given region
y9 9 vector

maxpooling

-
g =

2 B

He, Zhang,Ren & Sun, “Spatial Pyramid Pooling (SPP) in Deep Convolutional Networks for Visual Recognition”, ECCV 2014



The Spatial (Pyramid) Pooling layer
As a building block

feature Spp s region-specific
map | feature vectors
= Ll
list of
regions

He, Zhang,Ren & Sun, “Spatial Pyramid Pooling (SPP) in Deep Convolutional Networks for Visual Recognition”, ECCV 2014



The Spatially Pyramid Pooling Layer

Same as above, but for multiple subdivisions




Fast R-CNN

Summary same
/ parameters
= 4

chair

SPP

box refinement

background

selective
search

box refinement

potted plant

box refinement

Ross Girshick. “Fast R-CNN”. ICCV 2015



selective
search

Fast R-CNN

Summary

— o

A




R-CNN minus R

Fixed image-independent proposal set

| all training simplify
boxes using clustering

~2-3000 representative
‘ boxes

Fixed proposal generation
» Take all bounding boxes in the training set

» Run K-means clustering to distill a few thousands

[Lenc Vedaldi BMVC 2015]



R-CNN minus R

Replace image-specific boxes with a fixed pool

fixed boxes pool



Why does it work?

Answer: regression is quite powerful

Dashed line: initial Solid line: corrected by the CNN



Faster R-CNN

Better fixed proposals

3 aspect ratios

/’_\—3 together
proposals 2
prototypes § f >
(anchors) " |
™ §
ldeas:

» Better fixed region proposal sampling
» lterated classification: propose box, refine box, classify box

» Proposal shape specific classifier / regressors

Ren, He, Girshick, & Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”.
NIPS 2015.



Faster R-CNN

Better fixed proposals

Ren, He, Girshick, & Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”.
NIPS 2015.



Shape-specific classifiers / regressors

different parameters

Model parameters: translation invariant but shape/scale specific

Object aspects are learned by brute force

Ren, He, Girshick, & Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”.
NIPS 2015.



Multi-scale representations

Three strategies

scale image scale feature filters fixed scale features

model parameters shared for all scales “brute force” modeling of scale
recompute features for each scale compute features at a single scale

cannot “see” fine details even when visible can model fine details



Fast and Faster R-CNN performance

Better, faster!

~50s 66.0

Fast R-CNN ~28 66.9

Faster R-CNN 198ms 69.9

Detection mAP on PASCAL VOC 2007, with VGG-16 pre-trained on ImageNet.



Example detections

cat:0.928
L

L 1

\ person :0.993

person :0.981

___—A]
r ' person :0.907
)

) \
»




PASCAL VOC Leaderboards

train on own data)

Detection challenge (comp4

http://tinyurl.com/n7uzkov
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http://tinyurl.com/h7uzkov

Supervision required

Still a major limitation

Can get around in various ways, for example by using synthetic data

-
- “. ,{ -
-"-'.z.'-r‘:' ———— i

A. Gupta et al.. Synthetic data for text localisation in natural images. Proc. CVPR, 2016



Weakly-supervised learning

Use partial labelings

From this To this

“There are
a cat, a person,
a chair”



Towards weak supervision

High-level view

conv net + SPP deep net
region-level region-specific
features class labels
region s .
proposals
iImage-level

class labels



region
proposals

Towards weak supervision

Region scores to class labels

i

conv net + SPP

region-level
features

deep net

region-level
scores

deep net

iImage-level
class labels



Towards weak supervision

Class labels = average of region labels

regions
IE >
(/)]
deep net 2 column row
a softmax average
[E —>
v
region-level region-level region-specific image-level
features scores class probs class labels

class (column) softmax

eXcr

Ucls(x) — Z

C



Towards weak supervision

Combine both class and region information

regions class (column) softmax
’ eXcr
(x) =
Ocls —
n Z @Xcr
O C
) column
a softmax
O
v
region-level region-specific @ | row
= average
scores class probs
row image-level
softmax region (row) softmax class probs
+—>
eXcr
Odet(X) =
. . det( ) Z @Xcr
region-level class-specific r

scores region probs



region
proposals

Two-streams weakly-supervised R-CNN

conv net + SPP

A

features

region-level §

Overview

deep net

deep net

column
softmax

row
softmax

+t—>

[Bilen Vedaldi CVPR 2016]
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Results

Two streams vs state-of-the-art

PASCAL VOC Detection (mAP)

Wang@ Bilen@ Cinbis@ Two

ECCV14 CVPR15 PAMI16  Streams ++
PASCAL VOCO7 30.2 27.7 31.6 39.3
PASCAL VOC10 27.4 . . 36.2

Two streams vs single stream

PASCAL VOC Detection (mAP)

Single Two Two
Stream Streams  Streams ++

PASCAL VOCO7 21.6 30.9 39.3



Results

Good results Failure modes
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Summary

Modern CNNs are still “new” technology
» Expect bigger and meaner CNNs to further improve performance
» CNNs are more than big balls of parameters

» We do not really understand what they do

CNNs can address directly many interesting applications
» Classification
» Segmentation
» Detection

» Regression

Addressing the supervision problem
» Transfer learning
» Synthetic data

» Pseudo-tasks



Still a long way to go

Integrated computer vision

» One network to rule them all

Cognition
» Integrate perception and “the rest”

» Planning, memory, background knowledge, ...

No labels required
» Unsupervised

» Alternatively supervised (reinforcement, pseudo-tasks)

Spatial reasoning
» From image-centric to object-centric and scene-centric understanding
» Representing deformable 3D shape

» Dynamic environments, physics



