(Somewhat) Advanced Convolutional Neural Networks Andrea Vedaldi

Medical Imaging Summer School

August 2016

Image representations

An encoder maps the data into a vectorial representation

Facilitate labelling of images, text, sound, videos, ...

Understanding visual representations

Modern convolutional neural networks

Applications

Segmentation: "fully convolutional" networks

Object detection: R-CNN and weak supervision

Understanding visual representations

Modern convolutional neural networks

Applications

Segmentation: "fully convolutional" networks

Object detection: R-CNN and weak supervision

Convolutional neural networks

Origin (1950-60)

Perceptron

[Rosenblatt 57]

The goal is estimating the posterior probability of the binary label y of a vector **x**:

Discovery of oriented cells in the visual cortex

[Hubel and Wiesel 59]

Data = 3D tensors

There is a vector of feature channels (e.g. RGB) at each spatial location (pixel).

Linear convolution

As a neural network

Deep architectures

Repeat linear / non-linear operators

Components of deep architectures

Modern convolutional networks

From AlexNet (2012) to ResNet (2015)

Modern convolutional nets

Excellent performance in image understanding tasks

Learn a sequence of **general-purpose representations** Millions of parameters learned from data

The "meaning" of the representation is unclear

17

AlexNet (2012)

20

21

Accuracy

$3 \times more$ accurate in 3 years

Speed

 $\mathbf{5}\times \mathbf{slower}$

Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers

Reason: far fewer feature channels (quadratic speed/space gain)

Moral: optimize your architecture

Model size

Num. of parameters is about the same

Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers

Reason: far fewer feature channels (quadratic speed/space gain)

Moral: optimize your architecture

Recent advances

Design guidelines

Batch normalization

Residual learning

Recent advances

Design guidelines

Batch normalization

Residual learning

Guideline 1: Avoid tight bottlenecks

image

From bottom to top

- ► The *spatial resolution* H × W decreases
- ► The *number of channels C* increases

Guideline

- Avoid tight information bottleneck
- Decrease the data volume H × W × C slowly

K. Simonyan and A. Zisserman. *Very deep convolutional networks for large-scale image recognition*. In Proc. ICLR, 2015.

C. Szegedy, V. Vanhoucke, S. loffe, and J. Shlens. *Rethinking the inception architecture for computer vision*. In Proc. CVPR, 2016.

Receptive field

Eventually, it must be large enough

Receptive field of a neuron

- The image region influencing a neuron
- Anything happening outside is invisible to the neuron

Importance

Large image structures cannot be detected by neurons with small receptive fields

Obtaining large receptive fields

- Large filters
- Chains of small filters

neuron's receptive field

Guideline 2: Prefer small filter chains

Benefit 1: less parameters, possibly faster

Benefit 2: same receptive field of a bigger filter

Benefit 3: packs two non-linearities (ReLUs)

Guideline 3: *Keep the number of channels at bay*

Guideline 4: Less computations with filter groups

complexity $\propto (C \times K) / G$

Guideline 4: Less computations with filter groups

complexity: $C \times K / G$

Groups = filters, seen as a matrix, have a "block" structure

Guideline 5: Low-rank decompositions

Make sure to mix the information

Recent advances

Design guidelines

Batch normalization

Residual learning

Batch normalization

Better condition features

Standardize the response of each feature channel within the batch

- Average over spatial locations
- ► Also, average over multiple images in the batch (e.g. 16-256)

S. loffe and C. Szegedy. *Batch normalization: Accelerating deep network training by reducing internal covariate shift*. CoRR, 2015
Batch normalization

Training vs testing modes

Moments (mean & variance)

- ► **Training**: compute anew for each batch
- Testing: fixed to their average values

Batch normalization

Utilization

Batch normalization is used after filtering, before ReLU

It is always followed by channel-specific scaling factor *s* and bias *b*

Noisy bias/variance estimation replaces dropout regularization

Recent advances

Design guidelines

Batch normalization

Residual learning

Residual learning

Hardwired identity in parallel with a learned residual transformation

K. He, X. Zhang, S. Ren, and J. Sun. *Deep residual learning for image recognition*. In Proc. CVPR, 2016.

Deep nets in vision: 2012-2015

Impact of deep learning in vision

- 2012 amazing results by AlexNet in the ImageNet challenge
- 2013-15 massive 3x improvement
- 2016-19 more improvements?

What have we learned

- Several incremental tweaks over the base AlexNet
- There is still space for improvements to the base model

Things that work

- Deeper architectures
- Smarter architectures (groups, low rank decompositions, ...)
- Batch normalization
- Residual connections

Understanding visual representations

Modern convolutional neural networks

Applications

Segmentation: "fully convolutional" networks

Object detection: R-CNN and weak supervision

Applications

Semantic image segmentation

Label individual pixels

Face analysis

Detection, verification, recognition, emotion, 3D fitting

Detection, word recognition, character recognition

E.g. SynthText and VGG-Text

http://zeus.robots.ox.ac.uk/textsearch/#/search/

Object detection

Extract individual object instances

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation R. Girshick, J. Donahue, T. Darrell, J. Malik, CVPR 2014

Understanding visual representations

Modern convolutional neural networks

Applications

Segmentation: "fully convolutional" networks

Object detection: R-CNN and weak supervision

Semantic segmentation

Semantic image segmentation

Label individual pixels

Convolutional layers

Local receptive field

Fully connected layers

Global receptive field

class predictions

Convolutional vs fully connected

Comparing the receptive fields

Fully-connected = very large filter

"FC" is just a name for a particular filter configuration

Fully-convolutional neural networks

Fully-convolutional neural networks

Dense evaluation

- Apply the whole network convolutional
- Estimates a vector of class probabilities at each pixel

Downsampling

- In practice most network downsample the data fast
- The output is very low resolution (e.g. 1/32 of original)

Upsampling the result

Interpolating filter

Upsampling filters allow to increase the resolution of the output

Very useful to get full-resolution segmentation results

Deconvolution layer

Or convolution transpose

U-architectures

From image to image

U-architectures

Several variants: FCN, U-arch, deconvolution, ...

J. Long, E. Shelhamer, and T. Darrell. *Fully convolutional models for semantic segmentation*. In Proc. CVPR, 2015 H. Noh, S. Hong, and B. Han. *Learning deconvolution networ'* O. Ronneberger, P. Fischer, and T. Brox. *U-net: Convolutional netwo*

innut

mar

Understanding visual representations

Modern convolutional neural networks

Applications

Segmentation: "fully convolutional" networks

Object detection: R-CNN and weak supervision

Object detection

Detections with conv nets

Region-based Convolutional Neural Network (R-CNN)

Pros: simple and effective

Cons: slow as the CNN is re-evaluated for each tested region

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation R. Girshick, J. Donahue, T. Darrell, J. Malik, CVPR 2014

Region proposals

Cut down the number of candidates

Proposal-method: Selective Search [van de Sande, Uijlings et al.]

- hierarchical segmentation
- each region generates a ROI
- ~ 2000 regions / image

From proposals to CNN features

Dilate, crop, reshape

Propose

Dilate

Crop & scale Anisotropic

227 x 227

From proposals to CNN features

Evaluate CNN

Scale Anisotropic 227 x 227

CNN features

Up to FC-7 AlexNet Feature vector 4096 D

Classification of a region

Run an SVM or similar on top

CNN features

Up to FC-7 AlexNet Feature vector 4096 D Label One out of *N*

Region adjustment

Bounding-box regression

CNN features

Up to FC-7 AlexNet Feature vector 4096 D Box adjustment dx1, dx2, dy1, dy2

Training: what is a positive or negative box?

Based on overlap with ground truth

Ren, He, Girshick, & Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

R-CNN results on PASCAL VOC

At the time of introduction (2013)

	VOC 2007	VOC 2010
DPM v5 (Girshick et al. 2011)	33.7%	29.6%
UVA sel. search (Uijlings et al. 2013)		35.1%
Regionlets (Wang et al. 2013)	41.7%	39.7%
SegDPM (Fidler et al. 2013)		40.4%
R-CNN (TorontoNet)	54.2%	50.2%
R-CNN (TorontoNet) + bbox regression	58.5%	53.7%
R-CNN (VGG-VD)	62.1%	
R-CNN (ONet) + bbox regression	66.0%	62.9%

R-CNN summary

Region-based Convolutional Neural Network

Can we achieve end-to-end training?

Towards better R-CNNs

Region-based Convolutional Neural Network

End-to-end training

Except for region proposals

Problem: this is still pretty slow!
Accelerating R-CNN

The Spatial (Pyramid) Pooling layer

Max pooling in arbitrary regions

He, Zhang, Ren & Sun, "Spatial Pyramid Pooling (SPP) in Deep Convolutional Networks for Visual Recognition", ECCV 2014

The Spatial (Pyramid) Pooling layer

As a building block

He, Zhang, Ren & Sun, "Spatial Pyramid Pooling (SPP) in Deep Convolutional Networks for Visual Recognition", ECCV 2014

The Spatially Pyramid Pooling Layer

Same as above, but for multiple subdivisions

Fast R-CNN

Fast R-CNN

Summary

R-CNN minus R

Fixed image-independent proposal set

Fixed proposal generation

- ► Take all bounding boxes in the training set
- Run K-means clustering to distill a few thousands

[Lenc Vedaldi BMVC 2015]

R-CNN minus R

Replace image-specific boxes with a fixed pool

fixed boxes pool

Why does it work?

Answer: regression is quite powerful

Dashed line: initial

Solid line: corrected by the CNN

Faster R-CNN

Better fixed proposals

Ideas:

- Better fixed region proposal sampling
- Iterated classification: propose box, refine box, classify box
- Proposal shape specific classifier / regressors

Ren, He, Girshick, & Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

Faster R-CNN

Better fixed proposals

Ren, He, Girshick, & Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

Shape-specific classifiers / regressors

Model parameters: translation invariant but shape/scale specific

Object aspects are learned by brute force

Ren, He, Girshick, & Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

Multi-scale representations

Three strategies

Fast and Faster R-CNN performance

Better, faster!

Method	Time / image	mAP (%)
R-CNN	~50s	66.0
Fast R-CNN	~2s	66.9
Faster R-CNN	198ms	69.9

Detection mAP on PASCAL VOC 2007, with VGG-16 pre-trained on ImageNet.

Example detections

PASCAL VOC Leaderboards

Detection challenge (comp4: train on own data)

http://tinyurl.com/h7uzkov

Supervision required

Still a major limitation

Can get around in various ways, for example by using synthetic data

A. Gupta et al.. Synthetic data for text localisation in natural images. Proc. CVPR, 2016

Weakly-supervised learning

Use partial labelings

From this

To this

"There are a cat, a person, a chair"

High-level view

Region scores to class labels

Class labels = average of region labels

$$\sigma_{\mathsf{cls}}(\mathbf{x}) = \frac{e^{-c_{r}}}{\sum_{c} e^{x_{cr}}}$$

Combine both class and region information

Two-streams weakly-supervised R-CNN

Overview

[Bilen Vedaldi CVPR 2016]

Results

Two streams vs state-of-the-art

PASCAL VOC Detection (mAP)					
	Wang@ ECCV14	Bilen@ CVPR15	Cinbis@ PAMI16	Two Streams ++	
PASCAL VOC07	30.2	27.7	31.6	39.3	
PASCAL VOC10	27.4	-	-	36.2	

Two streams vs single stream

PASCAL VOC Detection (mAP)						
	Single	Two	Two			
	Stiedill	Stiedins	Stiedills ++			
PASCAL VOC07	21.6	30.9	39.3			

Results

Good results

Failure modes

Summary

Modern CNNs are still "new" technology

- Expect bigger and meaner CNNs to further improve performance
- CNNs are more than big balls of parameters
- We do not really understand what they do

CNNs can address directly many interesting applications

- Classification
- Segmentation
- Detection
- Regression

Addressing the supervision problem

- Transfer learning
- Synthetic data
- Pseudo-tasks

Still a long way to go

Integrated computer vision

One network to rule them all

Cognition

- Integrate perception and "the rest"
- ▶ Planning, memory, background knowledge, ...

No labels required

- Unsupervised
- Alternatively supervised (reinforcement, pseudo-tasks)

Spatial reasoning

- From image-centric to object-centric and scene-centric understanding
- Representing deformable 3D shape
- Dynamic environments, physics