
Andrea Vedaldi  
 
Medical Imaging Summer School 

August 2016 

(Somewhat) Advanced  
Convolutional Neural Networks



Image representations

 An encoder maps the data into a vectorial representation 

 Facilitate labelling of images, text, sound, videos, …
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Understanding visual representations

Modern convolutional neural networks 

Applications

 
Segmentation: “fully convolutional” networks

Object detection: R-CNN and weak supervision
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Convolutional neural networks  
 

Origin (1950-60)



[Rosenblatt 57]

Perceptron

 The goal is estimating the posterior probability of the binary label y of a vector x: 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[Hubel and Wiesel 59]

Discovery of oriented cells in the visual cortex 9

oriented filter
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 There is a vector of feature channels (e.g. RGB) at each spatial location (pixel).

Data = 3D tensors 12
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As a neural network

Linear convolution 13
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Repeat linear / non-linear operators

Deep architectures 14

x

Σ

Σ

y

S

S

Σ S …



Components of deep architectures 15
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Modern convolutional networks  
 

From AlexNet (2012) to ResNet (2015)



Modern convolutional nets

 Excellent performance in image 
understanding tasks

 Learn a sequence of general-purpose 
representations  

 Millions of parameters learned from 
data

 The “meaning” of the representation is 
unclear

17

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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[AlexNet by Krizhevsky et al. 2012]



How deep is deep enough? 18

AlexNet (2012)

5 convolutional layers

3 fully-connected layers
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How deep is deep enough? 22

AlexNet (2012)
VGG-M (2013)

VGG-VD-16 (2014)
GoogLeNet (2014)

ResNet 152 (2015)
ResNet 50 (2015)

152 convolutional layers

50 convolutional layers

16 convolutional layers Krizhevsky, I. Sutskever, and G. E. Hinton. 
ImageNet classification with deep convolutional 
neural networks. In Proc. NIPS, 2012. 

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. 
Reed, D. Anguelov, D. Erhan, V. Vanhoucke, 
and A. Rabinovich. Going deeper with 
convolutions. In Proc. CVPR, 2015. 

K. Simonyan and A. Zisserman. Very deep 
convolutional networks for large-scale image 
recognition. In Proc. ICLR, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep 
residual learning for image recognition. In Proc. 
CVPR, 2016.



3 ⨉ more accurate in 3 years

Accuracy 23
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5 ⨉ slower

Speed

 Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers

 Reason: far fewer feature channels (quadratic speed/space gain)

 Moral: optimize your architecture
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Num. of parameters is about the same

Model size 25
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Batch normalization

Design guidelines

Residual learning



 From bottom to top
▶ The spatial resolution H ⨉ W decreases

▶ The number of channels C increases

 Guideline 
▶ Avoid tight information bottleneck
▶ Decrease the data volume 

H ⨉ W ⨉ C slowly

Guideline 1: Avoid tight bottlenecks

Design guidelines 28

image

features

K. Simonyan and A. Zisserman. Very deep convolutional 
networks for large-scale image recognition. In Proc. 
ICLR, 2015.  

C. Szegedy, V. Vanhoucke, S. Ioffe, and J. Shlens. 
Rethinking the inception architecture for computer 
vision. In Proc. CVPR, 2016.



Eventually, it must be large enough

Receptive field

 Receptive field of a neuron
▶ The image region influencing a neuron
▶ Anything happening outside is invisible 

to the neuron

 Importance 
▶ Large image structures cannot be 

detected by neurons with small receptive 
fields

 Obtaining large receptive fields
▶ Large filters
▶ Chains of small filters

29

neuron’s 
receptive field

“neuron”



Guideline 2: Prefer small filter chains

Design guidelines

 Benefit 1: less parameters, possibly faster

 Benefit 2: same receptive field of a bigger filter

 Benefit 3: packs two non-linearities (ReLUs)

30

5 ⨉ 5 filters 
+ ReLU

3 ⨉ 3 filters 
+ ReLU

prefer

3 ⨉ 3 filters 
+ ReLU

One big filter bank Two smaller filter banks



Guideline 3: Keep the number of channels at bay

Design guidelines 31

 H ⨉ W ⨉ C

 Hf ⨉ Wf ⨉ C ⨉ K

C = num. input channels 

K = num. output channels

 Num. of parameters

Num. of operations

complexity ∝ C ⨉ K



Guideline 4: Less computations with filter groups

Design guidelines 32

split 
channels

filter  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put 
back

M filters G groups of M/G filters

consider 
instead

complexity ∝(C ⨉ K) / G



Guideline 4: Less computations with filter groups

Design guidelines

 Groups = filters, seen as a matrix, have a “block” structure

33
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Guideline 5: Low-rank decompositions

Design guidelines

 Make sure to mix the information

34

filter bank  
3 ⨉ 3 ⨉ C ⨉ K 

vertical 
1 ⨉ 3 ⨉ C ⨉ K 

horizontal 
3 ⨉ 1 ⨉ K ⨉ K 

vertical 
1 ⨉ 3 ⨉ K ⨉ K 

groups  
3 ⨉ 3 ⨉ C/G ⨉ K/G 

“network in network”  
1 ⨉ 1 ⨉ K ⨉ K

decompose  
spatially
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channels
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✱
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Batch normalization

Design guidelines

Residual learning



Better condition features

Batch normalization

 Standardize the response of each feature channel within the batch
▶ Average over spatial locations
▶ Also, average over multiple images in the batch (e.g. 16-256)

36

batch of 
N tensors

pick feature channel k

mean µk

variance σk

subtract mean & 
divide by variance

compute  
moments

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by  
reducing internal covariate shift. CoRR, 2015



Training vs testing modes

Batch normalization

 Moments (mean & variance)
▶ Training: compute anew for each batch
▶ Testing: fixed to their average values

37

BN
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moments 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Training: 
batch-specific 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Testing: 
moment averages are 
used instead  
of batch-specific 
moments



Utilization

Batch normalization

 Batch normalization is used after filtering, before ReLU

 It is always followed by channel-specific scaling factor s and bias b

 Noisy bias/variance estimation replaces dropout regularization

38

✱ BN scale  
bias

xn+3xn+1xn xn+2
ReLU
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moments 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filters, biases 
F, b

scale, biases 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a single block in  

MatConvNet
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Batch normalization
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Residual learning



Hardwired identity in parallel with a learned residual transformation

Residual learning 40

✱ ReLU ✱
xn+3xn+1xn xn+2

ReLU
xn+4

Σ
xn+5

identity residual

ReLU ✱ ReLU Σ ✱ ReLU ✱ ReLU Σ ✱ ReLU ✱ ReLU

K. He, X. Zhang, S. 
Ren, and J. Sun. 
Deep residual 
learning for image 
recognition. In Proc. 
CVPR, 2016.



Deep nets in vision: 2012-2015

 Impact of deep learning in vision
▶ 2012 amazing results by AlexNet in the ImageNet challenge
▶ 2013-15 massive 3x improvement
▶ 2016-19 more improvements?

 What have we learned
▶ Several incremental tweaks over the base AlexNet
▶ There is still space for improvements to the base model

 Things that work
▶ Deeper architectures
▶ Smarter architectures (groups, low rank decompositions, …)
▶ Batch normalization
▶ Residual connections

41



Understanding visual representations

Modern convolutional neural networks 

Applications

 
Segmentation: “fully convolutional” networks

Object detection: R-CNN and weak supervision
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Part II: A CNN example in text spotting

Applications



Label individual pixels

Semantic image segmentation 44

sofa

personcat



Detection, verification, recognition, emotion, 3D fitting

Face analysis

 E.g. VGG-Face

45

same different



Detection, word recognition, character recognition

Text spotting

 E.g. SynthText and VGG-Text

46

CREAM

http://zeus.robots.ox.ac.uk/textsearch/#/search/



Extract individual object instances

Object detection 47

boat : 0.853 person :0.993

person :0.981
person :0.972

person :0.907

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation 
R. Girshick, J. Donahue, T. Darrell, J. Malik, CVPR 2014

http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf


Understanding visual representations

Modern convolutional neural networks 

Applications

 
Segmentation: “fully convolutional” networks

Object detection: R-CNN and weak supervision
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Semantic segmentation



Label individual pixels

Semantic image segmentation 50

c1 c2 c3 c4 c5 f6 f7 f8

input = image output = image
convolutional fully-connected



Local receptive field

Convolutional layers 51

input  
image

features

receptive field

feature component



Global receptive field

Fully connected layers 52

fully-connected

class predictions

fully-connected

fully-connected



Comparing the receptive fields

Convolutional vs fully connected 53

Responses are spatially selective, 
can be used to localize things.

Responses are global, do not 
characterize well position.

Which one is 
more useful for 

pixel level labelling?

Downsampling filters Upsampling filters



“FC” is just a name for a particular filter configuration

Fully-connected = very large filter 54

F(k)

W ⨉ H ⨉ C

K

w(k)
W ⨉ H ⨉ C ⨉ K
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✱
=



Fully-convolutional neural networks 55

class predictions

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional models for semantic segmentation. In Proc. CVPR, 2015



Fully-convolutional neural networks

 Dense evaluation
▶ Apply the whole network 

convolutional
▶ Estimates a vector of class 

probabilities at each pixel

 Downsampling
▶ In practice most network 

downsample the data fast
▶ The output is very low resolution 

(e.g. 1/32 of original)
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Interpolating filter

Upsampling the result

 Upsampling filters allow to increase the resolution of the output

 Very useful to get full-resolution segmentation results

57

Σ Σ

Downsampling filters Upsampling filters



Or convolution transpose

Deconvolution layer 58

Convolution

✱

F

As matrix multiplication

Banded matrix equivalent to  F

Transposed

Transposed matrix

Convolution transpose

✱T

F



From image to image

U-architectures 59

input image
segmentation mask

(output image)

net

net

net

net

net

skip  
layers



Several variants: FCN, U-arch, deconvolution, …

U-architectures 60

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional models for semantic segmentation. In Proc. CVPR, 2015  
H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In Proc. ICCV, 2015  

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In Proc. MICCAI, 2015
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Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the di↵erent operations.

as input. First, this network can localize. Secondly, the training data in terms
of patches is much larger than the number of training images. The resulting
network won the EM segmentation challenge at ISBI 2012 by a large margin.

Obviously, the strategy in Ciresan et al. [1] has two drawbacks. First, it
is quite slow because the network must be run separately for each patch, and
there is a lot of redundancy due to overlapping patches. Secondly, there is a
trade-o↵ between localization accuracy and the use of context. Larger patches
require more max-pooling layers that reduce the localization accuracy, while
small patches allow the network to see only little context. More recent approaches
[11,4] proposed a classifier output that takes into account the features from
multiple layers. Good localization and the use of context are possible at the
same time.

In this paper, we build upon a more elegant architecture, the so-called “fully
convolutional network” [9]. We modify and extend this architecture such that it
works with very few training images and yields more precise segmentations; see
Figure 1. The main idea in [9] is to supplement a usual contracting network by
successive layers, where pooling operators are replaced by upsampling operators.
Hence, these layers increase the resolution of the output. In order to localize, high
resolution features from the contracting path are combined with the upsampled

Figure 2. Overall architecture of the proposed network. On top of the convolution network based on VGG 16-layer net, we put a multi-
layer deconvolution network to generate the accurate segmentation map of an input proposal. Given a feature representation obtained from
the convolution network, dense pixel-wise class prediction map is constructed through multiple series of unpooling, deconvolution and
rectification operations.

We employ VGG 16-layer net [22] for convolutional part
with its last classification layer removed. Our convolution
network has 13 convolutional layers altogether, rectifica-
tion and pooling operations are sometimes performed be-
tween convolutions, and 2 fully connected layers are aug-
mented at the end to impose class-specific projection. Our
deconvolution network is a mirrored version of the convo-
lution network, and has multiple series of unpooing, decon-
volution, and rectification layers. Contrary to convolution
network that reduces the size of activations through feed-
forwarding, deconvolution network enlarges the activations
through the combination of unpooling and deconvolution
operations. More details of the proposed deconvolution net-
work is described in the following subsections.

3.2. Deconvolution Network for Segmentation

We now discuss two main operations, unpooling and de-
convolution, in our deconvolution network in details.

3.2.1 Unpooling

Pooling in convolution network is designed to filter noisy
activations in a lower layer by abstracting activations in a
receptive field with a single representative value. Although
it helps classification by retaining only robust activations in
upper layers, spatial information within a receptive field is
lost during pooling, which may be critical for precise local-
ization that is required for semantic segmentation.

To resolve such issue, we employ unpooling layers in de-
convolution network, which perform the reverse operation
of pooling and reconstruct the original size of activations as
illustrated in Figure 3. To implement the unpooling opera-
tion, we follow the similar approach proposed in [24, 25]. It
records the locations of maximum activations selected dur-
ing pooling operation in switch variables, which are em-
ployed to place each activation back to its original pooled
location. This unpooling strategy is particularly useful to
reconstruct the structure of input object as described in [24].

Figure 3. Illustration of deconvolution and unpooling operations.

3.2.2 Deconvolution

The output of an unpooling layer is an enlarged, yet sparse
activation map. The deconvolution layers densify the sparse
activations obtained by unpooling through convolution-like
operations with multiple learned filters. However, contrary
to convolutional layers, which connect multiple input ac-
tivations within a filter window to a single activation, de-
convolutional layers associate a single input activation with
multiple outputs, as illustrated in Figure 3. The output of
the deconvolutional layer is an enlarged and dense activa-
tion map. We crop the boundary of the enlarged activation
map to keep the size of the output map identical to the one
from the preceding unpooling layer.

The learned filters in deconvolutional layers correspond
to bases to reconstruct shape of an input object. Therefore,
similar to the convolution network, a hierarchical structure
of deconvolutional layers are used to capture different level
of shape details. The filters in lower layers tend to cap-
ture overall shape of an object while the class-specific fine-
details are encoded in the filters in higher layers. In this
way, the network directly takes class-specific shape infor-

FCN-32s FCN-16s FCN-8s Ground truth

Figure 4. Refining fully convolutional nets by fusing information
from layers with different strides improves segmentation detail.
The first three images show the output from our 32, 16, and 8
pixel stride nets (see Figure 3).

Table 2. Comparison of skip FCNs on a subset of PASCAL
VOC2011 validation7. Learning is end-to-end, except for FCN-
32s-fixed, where only the last layer is fine-tuned. Note that FCN-
32s is FCN-VGG16, renamed to highlight stride.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

FCN-32s-fixed 83.0 59.7 45.4 72.0
FCN-32s 89.1 73.3 59.4 81.4
FCN-16s 90.0 75.7 62.4 83.0
FCN-8s 90.3 75.9 62.7 83.2

a minor additional improvement to 62.7 mean IU, and find
a slight improvement in the smoothness and detail of our
output. At this point our fusion improvements have met di-
minishing returns, both with respect to the IU metric which
emphasizes large-scale correctness, and also in terms of the
improvement visible e.g. in Figure 4, so we do not continue
fusing even lower layers.

Refinement by other means Decreasing the stride of
pooling layers is the most straightforward way to obtain
finer predictions. However, doing so is problematic for our
VGG16-based net. Setting the pool5 layer to have stride 1
requires our convolutionalized fc6 to have a kernel size of

14⇥ 14 in order to maintain its receptive field size. In addi-
tion to their computational cost, we had difficulty learning
such large filters. We made an attempt to re-architect the
layers above pool5 with smaller filters, but were not suc-
cessful in achieving comparable performance; one possible
explanation is that the initialization from ImageNet-trained
weights in the upper layers is important.

Another way to obtain finer predictions is to use the shift-
and-stitch trick described in Section 3.2. In limited exper-
iments, we found the cost to improvement ratio from this
method to be worse than layer fusion.

4.3. Experimental framework

Optimization We train by SGD with momentum. We
use a minibatch size of 20 images and fixed learning rates of
10�3, 10�4, and 5�5 for FCN-AlexNet, FCN-VGG16, and
FCN-GoogLeNet, respectively, chosen by line search. We
use momentum 0.9, weight decay of 5�4 or 2�4, and dou-
bled the learning rate for biases, although we found training
to be insensitive to these parameters (but sensitive to the
learning rate). We zero-initialize the class scoring convo-
lution layer, finding random initialization to yield neither
better performance nor faster convergence. Dropout was in-
cluded where used in the original classifier nets.

Fine-tuning We fine-tune all layers by back-
propagation through the whole net. Fine-tuning the
output classifier alone yields only 70% of the full fine-
tuning performance as compared in Table 2. Training from
scratch is not feasible considering the time required to
learn the base classification nets. (Note that the VGG net is
trained in stages, while we initialize from the full 16-layer
version.) Fine-tuning takes three days on a single GPU for
the coarse FCN-32s version, and about one day each to
upgrade to the FCN-16s and FCN-8s versions.

Patch Sampling As explained in Section 3.4, our full
image training effectively batches each image into a regu-

image pool4 pool5pool1 pool2 pool3

32x upsampled

prediction (FCN-32s)
2x upsampled

prediction

16x upsampled

prediction (FCN-16s)

8x upsampled

prediction (FCN-8s)

pool4

prediction

2x upsampled

prediction

pool3

prediction

P P

Figure 3. Our DAG nets learn to combine coarse, high layer information with fine, low layer information. Layers are shown as grids that
reveal relative spatial coarseness. Only pooling and prediction layers are shown; intermediate convolution layers (including our converted
fully connected layers) are omitted. Solid line (FCN-32s): Our single-stream net, described in Section 4.1, upsamples stride 32 predictions
back to pixels in a single step. Dashed line (FCN-16s): Combining predictions from both the final layer and the pool4 layer, at stride
16, lets our net predict finer details, while retaining high-level semantic information. Dotted line (FCN-8s): Additional predictions from
pool3, at stride 8, provide further precision.



Understanding visual representations

Modern convolutional neural networks 

Applications

 
Segmentation: “fully convolutional” networks

Object detection: R-CNN and weak supervision

61



boat : 0.853 person :0.993

person :0.981
person :0.972

person :0.907

Object detection



Region-based Convolutional Neural Network (R-CNN)

Detections with conv nets

Pros: simple and effective  
 

  
 
 
 
 
 
 
Cons: slow as the CNN is re-evaluated for each tested region

63

c5c1 c2 c3 c4 f6 f7 SVM label

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation 
R. Girshick, J. Donahue, T. Darrell, J. Malik, CVPR 2014

CNN chair

background

potted plant

CNN

CNN

http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf


Cut down the number of candidates

Region proposals

 Proposal-method: Selective Search [van de Sande, Uijlings et al.]
▶ hierarchical segmentation
▶ each region generates a ROI
▶ ~ 2000 regions / image

64



Dilate, crop, reshape

From proposals to CNN features 65

Dilate Crop & scale 
Anisotropic 
227 x 227

Propose



Evaluate CNN

From proposals to CNN features 66

Dilate Scale 
Anisotropic 
227 x 227

c5c1 c2 c3 c4 f6 f7

CNN features 
Up to FC-7  

AlexNet

Feature vector 
4096 D 



Run an SVM or similar on top

Classification of a region 67

Scale 
Anisotropic 
227 x 227

c5c1 c2 c3 c4 f6 f7

CNN features 
Up to FC-7  

AlexNet

Feature vector 
4096 D 

Label 
One out of N 

aeroplane

cat

dog

horse

person

…

SVM

old school



Bounding-box regression

Region adjustment 68

Scale 
Anisotropic 
227 x 227

c5c1 c2 c3 c4 f6 f7

CNN features 
Up to FC-7  

AlexNet

Feature vector 
4096 D 

Box adjustment 
dx1, dx2, dy1, dy2 

Ridge  
regress.



Based on overlap with ground truth

Training: what is a positive or negative box? 69

treat as 
positive  

 
overlap > 70%

treat as 
negative  

 
overlap < 30%

Ren, He, Girshick, &  Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. 
NIPS 2015.



At the time of introduction (2013)

R-CNN results on PASCAL VOC 70

VOC 2007 VOC 2010
DPM v5 (Girshick et al. 2011) 33.7% 29.6%

UVA sel. search (Uijlings et al. 2013) 35.1%
Regionlets (Wang et al. 2013) 41.7% 39.7%
SegDPM (Fidler et al. 2013) 40.4%

R-CNN (TorontoNet) 54.2% 50.2%
R-CNN (TorontoNet) + bbox regression 58.5% 53.7%

R-CNN (VGG-VD) 62.1%
R-CNN (ONet) + bbox regression 66.0% 62.9%



 Can we achieve end-to-end training?

Region-based Convolutional Neural Network

R-CNN summary 71

image

pertained on ImageNet 
then fine-tuned

trained a-posterioriold school

Ridge  
regression

classimage SVM 
classifier

CNN  
features

Region  
proposals

box



 End-to-end training

 Except for region proposals

 Problem: this is still pretty slow!

Region-based Convolutional Neural Network

Towards better R-CNNs 72

CNN  
regressor

classimage CNN  
classifier

CNN  
features

Region  
proposals

box



Accelerating R-CNN 73

c5c1 c2 c3 c4 f6 f7

c5c1 c2 c3 c4 f6 f7

c5c1 c2 c3 c4 f6 f7

chair

background

potted plant

crop

c5c1 c2 c3 c4

f6 f7

f6 f7

f6 f7

chair

background

potted plant

crop



Max pooling in arbitrary regions

The Spatial (Pyramid) Pooling layer 74

He, Zhang,Ren & Sun, “Spatial Pyramid Pooling (SPP)  in Deep Convolutional Networks for Visual Recognition”, ECCV 2014

any given region

c5c1 c2 c3 c4

feature  
vector

maxpooling



As a building block

The Spatial (Pyramid) Pooling layer 75

SPPfeature  
map

list of 
regions

region-specific 
feature vectors

He, Zhang,Ren & Sun, “Spatial Pyramid Pooling (SPP)  in Deep Convolutional Networks for Visual Recognition”, ECCV 2014



Same as above, but for multiple subdivisions

The Spatially Pyramid Pooling Layer 76

maxpooling



Summary

Fast R-CNN 77

c5c1 c2 c3 c4

f6 f7 chair

selective  
search

SPP
r6 r7 box refinement

f6 f7 background

r6 r7 box refinement

f6 f7 potted plant

r6 r7 box refinement
Ross Girshick. “Fast R-CNN”. ICCV 2015

same  
parameters



object
object

Summary

Fast R-CNN 78

c5c1 c2 c3 c4

f6 f7

selective  
search

SPP

r6 r7

object

box
boxobjectbox



Fixed image-independent proposal set

R-CNN minus R

 Fixed proposal generation
▶ Take all bounding boxes in the training set
▶ Run K-means clustering to distill a few thousands

79

[Lenc Vedaldi BMVC 2015]

all training  
boxes

simplify 
using clustering

~2-3000 representative  
boxes



Replace image-specific boxes with a fixed pool

R-CNN minus R 80

c5c1 c2 c3 c4 SPP

fixed boxes pool

object
objectf6 f7

r6 r7

object

box
boxobjectbox



Answer: regression is quite powerful

Why does it work? 81

 Dashed line: initial Solid line: corrected by the CNN



Better fixed proposals

Faster R-CNN

 Ideas:
▶ Better fixed region proposal sampling
▶ Iterated classification: propose box, refine box, classify box
▶ Proposal shape specific classifier / regressors

82

Ren, He, Girshick, &  Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. 
NIPS 2015.

3 
sc

al
es

3 aspect ratios

proposals 
prototypes 
(anchors)

together



Better fixed proposals

Faster R-CNN 83

Ren, He, Girshick, &  Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. 
NIPS 2015.



Shape-specific classifiers / regressors

 Model parameters: translation invariant but shape/scale specific

 Object aspects are learned by brute force  

84

f6,1 f7,1

shape 
1

r6,1 r7,1

f6,2 f7,2

r6,2 r7,2

shape  
2

shape  
3

f6,3 f7,3

r6,3 r7,3

…

different parameters

Ren, He, Girshick, &  Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. 
NIPS 2015.



Three strategies

Multi-scale representations 85

scale image scale feature filters fixed scale features

model parameters shared for all scales 

recompute features for each scale  

cannot “see” fine details even when visible

“brute force” modeling of scale  

compute features at a single scale  

can model fine details



Better, faster!

Fast and Faster R-CNN performance 86

Method Time / image mAP (%)

R-CNN ~50s 66.0

Fast R-CNN ~2s 66.9

Faster R-CNN 198ms 69.9

Detection mAP on PASCAL VOC 2007, with VGG-16 pre-trained on ImageNet.



Example detections 87

bus: 0.980

car : 1.000

dog : 0.989

person : 0.992

person : 0.974

horse : 0.993

boat : 0.853 person : 0.993

person : 0.981

person : 0.972

person : 0.907

cat : 0.928

dog : 0.983

person : 0.753



Detection challenge (comp4: train on own data)

PASCAL VOC Leaderboards 88
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Still a major limitation

Supervision required

 Can get around in various ways, for example by using synthetic data

89

A. Gupta et al.. Synthetic data for text localisation in natural images. Proc. CVPR, 2016



Use partial labelings

Weakly-supervised learning 90

From this To this

“There are  
a cat, a person, 

a chair”

cat

chair

person

chair



High-level view

Towards weak supervision 91

conv net + SPP

region 
proposals

deep net

region-level  
features

region-specific 
class labels

image-level  
class labels

?



Region scores to class labels

Towards weak supervision 92

conv net + SPP

region 
proposals

deep net

region-level  
features

region-level  
scores

image-level  
class labels

deep net



Class labels = average of region labels

Towards weak supervision 93

conv net + SPP deep net

region-level  
features

region-level  
scores

cl
as

se
s

regions

column  
softmax

region-specific 
class probs

row  
average

class (column) softmax

image-level  
class labels



Combine both class and region information

Towards weak supervision 94

deep net column  
softmax

region-specific 
class probs

row  
average

image-level  
class probs

class-specific 
region probs

row  
softmax

class (column) softmax

region (row) softmax

⊙

deep net

region-level  
scores

region-level  
scores

cl
as

se
s

regions

region-level  



Overview

Two-streams weakly-supervised R-CNN 95

conv net + SPP

region 
proposals

deep net

region-level  
features

im
ag

e-l
ev

el  

cla
ss 

lab
els

deep net

column  
softmax

row  
softmax

⊙ row  
average

what

where

reg
ion

-le
ve

l  

sco
res

Use these for 
detection

[Bilen Vedaldi CVPR 2016]



Results 96

PASCAL	VOC	Detection	(mAP)

Wang@	
ECCV14

Bilen@	
CVPR15

Cinbis@	
PAMI16

Two  
Streams	++

PASCAL	VOC07 30.2 27.7 31.6 39.3

PASCAL	VOC10 27.4 - - 36.2

Two streams vs state-of-the-art

PASCAL	VOC	Detection	(mAP)

Single 
Stream

Two  
Streams

Two  
Streams	++

PASCAL	VOC07 21.6 30.9 39.3

Two streams vs single stream



Results 97

Good results Failure modes



Summary

 Modern CNNs are still “new” technology
▶ Expect bigger and meaner CNNs to further improve performance
▶ CNNs are more than big balls of parameters
▶ We do not really understand what they do

 CNNs can address directly many interesting applications
▶ Classification
▶ Segmentation
▶ Detection
▶ Regression

 Addressing the supervision problem
▶ Transfer learning
▶ Synthetic data
▶ Pseudo-tasks
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Still a long way to go

 Integrated computer vision
▶ One network to rule them all

 Cognition
▶ Integrate perception and “the rest”
▶ Planning, memory, background knowledge, …

 No labels required
▶ Unsupervised
▶ Alternatively supervised (reinforcement, pseudo-tasks)

 Spatial reasoning
▶ From image-centric to object-centric and scene-centric understanding
▶ Representing deformable 3D shape
▶ Dynamic environments, physics
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