# Understanding CNNs using visualisation and transformation analysis Andrea Vedaldi

**Medical Imaging Summer School** 

August 2016



## Image representations



#### An encoder maps the data into a vectorial representation

### Facilitate labelling of images, text, sound, videos, ...

# Modern convolutional nets



# Excellent **performance** in image understanding tasks

Learn a sequence of **general-purpose representations**  Millions of parameters learned from data

# The "meaning" of the representation is unclear

# Understanding visual representations

Visualizing representations

Backpropagation networks and "deconvolution"

Representations: equivalence & transformations

# Visualization: Pre-Image



# Visualization: Pre-Image



The reconstruction ambiguity **provides useful information about the representation** 

# Finding a Pre-Image

A simple yet general and effective method

$$\min_{\mathbf{x}} \|\Phi(\mathbf{x}) - \Phi_0\|_2^2$$



### Start from random noise

Optimize using stochastic gradient descent

# Finding a Pre-Image

A simple yet general and effective method

$$\min_{\mathbf{x}} \|\Phi(\mathbf{x}) - \Phi_0\|_2^2$$



# **Related Work**

## **Analysis tools**

### Visualizing higher-layer features of a deep network Ethan et al. 2009 [intermediate features]

Deep inside convolutional networks Simonyan et al. 2014 [deepest features, aka "deep dreams"]

DeConvNets Zeiler et al. In ECCV, 2014 [intermediate features]

Understanding neural networks through deep visualisation Yosinksi et al. 2015 [intermediate features]

### **Artistic tools**

Google's "inceptionsm" Mordvintsev et al. 2015

Style synthesis and transfer Gatys et al. 2015























































Original Image







Original Image













Original Image



















































# Inverting a Deep CNN





CNNs = visual codes?



# **Activation Maximization**

Look for an image that maximally activates a **specific feature component** 

$$\min_{\mathbf{x}} - \langle \mathbf{e}_k, \Phi(\mathbf{x}) \rangle + R_{TV}(\mathbf{x}) + R_{\alpha}(\mathbf{x})$$














# Remember: the starting point is white noise

Not an image!















conv3





### Network comparison

### "conv5" features

AlexNet



VGG-M



VGG-VD



### Caricaturization

[Google Inceptionism 2015, Mahendran et al. 2016]

Emphasise patterns that are detected by a certain representation

$$\min_{\mathbf{x}} - \langle \Phi(\mathbf{x}_0), \Phi(\mathbf{x}) 
angle + R_{TV}(\mathbf{x}) + R_{lpha}(\mathbf{x})$$

Key differences:

- ► the starting point **is** the image **x**<sub>0</sub>
- particular configurations of features are emphasized, not individual features

## Caricaturization (VGG-M)

input















conv3



conv4







## Caricaturization (VGG-M)

conv5



























### Interlude: neural art

Surprisingly, the filters learned by discriminative neural networks capture well the "style" of an image.

This can be used to transfer the style of an image (e.g. a painting) to any other.

### **Optimisation based**

L. A. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis and the controlled generation of natural stimuli using convolutional neural networks. In Proc. NIPS, 2015.

### Feed-forward neural network equivalents

D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky. Texture networks: Feedforward synthesis of textures and stylized images. Proc. ICML, 2016.

J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In Proc. ECCV, 2016.

### Generation by moment matching

53



#### **Moment matching**

- Content statistics: same as inversion
- Style statistics: cross-channel correlations

 $\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x}} E(\mathbf{x}; \mathbf{x}_{\operatorname{content}}, \mathbf{x}_{\operatorname{style}})$ 































Understanding visual representations

Visualizing representations

Backpropagation networks and "deconvolution"

Representations: equivalence & transformations

## Backpropagation

Compute derivatives using the chain rule



Chain rule: scalar version



Chain rule: scalar version



#### A composition of *n* functions



#### **Derivative** ← chain rule
### **Tensor-valued functions**

E.g. linear convolution = bank of 3D filters

$$\mathbf{y} = F * \mathbf{x} + b$$



|                 | height                 | width                  | channels | instances |
|-----------------|------------------------|------------------------|----------|-----------|
| input <b>x</b>  | Н                      | W                      | С        | 1 or N    |
| filters F       | H <sub>f</sub>         | Ŵf                     | С        | K         |
| output <b>y</b> | H - H <sub>f</sub> + 1 | W - W <sub>f</sub> + 1 | K        | 1 or N    |

**Vector representation** 



#### **Derivative of tensor-valued functions**



**Derivative (Jacobian)**: every output element w.r.t. every input element!



#### Chain rule: tensor version

Using vec() and matrix notation



#### The (unbearable) size of tensor derivatives



The size of these Jacobian matrices is **huge**. Example:



## Unless the output is a scalar



Now the Jacobian has the same size as **x**. Example:











## Projected function derivative

The "BP-reversed" layer



An "equivalent circuit" is obtained by introducing a transposed function f<sup>T</sup>

forward (eval)



 $y = vl_nnconv(x, W, b)$ 



$$y = vl_nnconv(x, W, b)$$



$$y = vl_nnconv(x, W, b)$$



#### backward (backprop)



 $dzdx = vl_nnconv(x, W, b, dzdy)$ 

### **Backpropagation network**

BP induces a "reversed" network



where 
$$d\mathbf{x}_i = \frac{df_n \circ \cdots \circ f_{i+1}}{d \operatorname{vec} \mathbf{x}_i}$$

**Note**: the BP network is linear in  $d\mathbf{x}_1, ..., d\mathbf{x}_{n-1}, d\mathbf{x}_n$ . Why?

## **Backpropagation network**

BP induces a "transposed" network

#### forward



backward

## **Backpropagation network**

Conv, ReLU, MP and their transposed blocks

#### forward



backward

## Sufficient statistics and bottlenecks

Usually much less information is needed

#### forward



backward

## Three visualisation techniques

Modified backpropagation networks



#### **Results**



# Key limitation of DeConvNets and similar

#### They are largely *not* neuron selective



#### Good for saliency

Bad for studying individual neurons (use inversion, act. max., etc. instead)

Understanding visual representations

Visualizing representations

Backpropagation networks and "deconvolution"

Representations: equivalence & transformations

### When are two representations the same?

Learning representations means that there is an endless number of them

Variants obtained by learning on different datasets, or different local optima



# Equivalence

AlexNet, same training data, different parametrization:



**CNN-B** 

# Equivalence

AlexNet, same training data, different parametrization:



## Equivalence with different random seeds



99

### Equivalence of similar architecture

#### Train on two different datasets

#### ILSVRC12 dataset

#### Places dataset















**CNN-PLACES** 

| 1 | 2 | 3 | 4 | 5 | FC |
|---|---|---|---|---|----|
|---|---|---|---|---|----|

## Equivalence with different training data



101

# Meaningful representations



#### Invariance is task dependent

Are **x** and **y** the same category?



Are **x** and **y** the same colour?



## Equivariance



g is an image transformation

*g* is the corresponding feature transformation

$$\Phi(g\mathbf{x}) = \mathsf{M}_g \, \Phi(\mathbf{x})$$

# Invariance



g is an image transformation

*g* is the corresponding feature transformation

the map Mg is the identity

# No equivariance



g is an image transformation

*g* is the corresponding feature transformation

the map M<sub>g</sub> does not exists (or is intractable)

## **Representations and transformations**



 $\Phi(g\mathbf{x}) = \mathsf{M}_g \, \Phi(\mathbf{x})$ 

#### An empirical test of equivariance

#### **Regularized linear regression**


### An empirical test of equivariance

#### **Regularized linear regression**



g

### An empirical test of equivariance

### **HOG features**

rotation 45 deg



110

## An empirical test of equivariance

### **HOG features**

rotation 45 deg



## CNN: a sequence of representations



We run the same analysis on a typical CNN architecture

- AlexNet [Krizevsky et al. 12]
- 5 convolutional layers + fully-connected layers
- Trained on ImageNet ILSVRC

## A discriminative goal to learn equivariance



113

# Vertical flips





Mg<sup>conv5</sup>

12345

# Summary

### Modern CNNs are still "new" technology

- Expect bigger and meaner CNNs to further improve performance
- CNNs are more than big balls of parameters
- We do not really understand what they do

### **Understanding deep nets**

- What do deep networks do?
- Are there computational / statistical principles to be learned?
- How much do deep nets learn about the visual world?

### **Possible angles**

- Visualisations
- Probing statistical properties