
Andrea Vedaldi  
 
Medical Imaging Summer School 

August 2016

Understanding CNNs using
visualisation and transformation
analysis

Image representations

 An encoder maps the data into a vectorial representation 

 Facilitate labelling of images, text, sound, videos, …

2

encoder Φ representation

Modern convolutional nets

 Excellent performance in image
understanding tasks

 Learn a sequence of general-purpose
representations  

 Millions of parameters learned from
data

 The “meaning” of the representation is
unclear

3

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

[AlexNet by Krizhevsky et al. 2012]

?

Understanding visual representations

Visualizing representations

 
Backpropagation networks and “deconvolution”

Representations: equivalence & transformations

4

Visualization: Pre-Image 5

Image Space Representation Space

Φ

Φ-1 Φ(x)

Φ-1

 The representation is not injective  

Visualization: Pre-Image

 The representation is not injective  

The reconstruction ambiguity provides
useful information about the
representation

6

Image Space Representation Space

Φ-1
Φ(x)

Finding a Pre-Image

 A simple yet general and effective method

7

Image Representation Pre-ImageReconstruction

≈

Start from random noise 
 

Optimize using stochastic gradient descent

Finding a Pre-Image

 A simple yet general and effective method

8

No prior TV-norm β = 1 TV-norm β = 2

Related Work

 Analysis tools  
 
Visualizing higher-layer features of
a deep network  
Ethan et al. 2009  
[intermediate features] 
 
Deep inside convolutional networks  
Simonyan et al. 2014  
[deepest features, aka “deep dreams”] 
 
DeConvNets  
Zeiler et al. In ECCV, 2014  
[intermediate features] 
 
Understanding neural networks
through deep visualisation  
Yosinksi et al. 2015  
[intermediate features] 

 Artistic tools  
 
Google’s “inceptionsm”  
Mordvintsev et al. 2015

 Style synthesis and transfer  
Gatys et al. 2015  

9

Inversion 10

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

Conv 1
ReLU 1
Max pool 1

LRN 1

AlexNet 
[Krizhevsky et al. 2012]

Conv 2
ReLU 2
Max pool 2

LRN 2

Conv 3
ReLU 3

Conv 4
ReLU 4

Conv 5
ReLU 5
Max pool 5

FC 6
ReLU 6

FC 7
ReLU 7

FC 8

Inversion

Original  
Image

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

11

Inversion

Original  
Image

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

12

Inversion

Original  
Image

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

13

Inversion

Original  
Image

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

14

Inversion

Original  
Image

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

15

Inversion

Original  
Image

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

16

Inversion

Original  
Image

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

17

Inversion

Original  
Image

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

18

Inversion

Original  
Image

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

19

Inversion

Original  
Image

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

20

Inversion

Original  
Image

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

21

Inversion

Original  
Image

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

22

Inversion

Original  
Image

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

23

Inversion

Original  
Image

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

24

Inversion

Original  
Image

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

25

Inversion

Original  
Image

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

26

Inversion

Original  
Image

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

27

Inversion

Original  
Image

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

28

Inversion

Original  
Image

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

29

Inversion

Original  
Image

conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

30

fc 8ReLU 6

Inverting a Deep CNN 31

Original
Image

Conv 1 Conv 2

Conv 3

Conv 4 Conv 5

FC 6 FC 7 FC 8

CNNs = visual codes? 32

conv1 conv5 fc8

 Look for an image that maximally activates a specific feature component

Activation Maximization 33

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

34

35

36

37

38

39

Not an image!

Remember: the starting point is white noise 40

41

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

42

conv1

43

conv2

44

conv3

45

conv4

46

conv5

“conv5” features

Network comparison 47

VGG-MAlexNet VGG-VD

[Google Inceptionism 2015, Mahendran et al. 2016]

Caricaturization

 Emphasise patterns that are detected by a certain representation  
 
 
 
 
 
 
Key differences:

▶ the starting point is the image x0

▶ particular configurations of features are emphasized, 
not individual features

48

Caricaturization (VGG-M) 49

conv2 conv3 conv4input

Caricaturization (VGG-M) 50

conv5 fc6 fc7 fc8

51

Interlude: neural art

 Surprisingly, the filters learned by discriminative neural networks capture well the
“style” of an image. 
 
This can be used to transfer the style of an image (e.g. a painting) to any other.

 Optimisation based

 L. A. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis and the controlled
generation of natural stimuli using convolutional neural networks. In Proc. NIPS,
2015.

 Feed-forward neural network equivalents

 D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky. Texture networks: Feed-
forward synthesis of textures and stylized images. Proc. ICML, 2016.

 J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer
and super-resolution. In Proc. ECCV, 2016.

52

Generation by moment matching

 Moment matching
▶ Content statistics: same as inversion
▶ Style statistics: cross-channel correlations

53

loss

loss

loss

loss

loss

sum

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

Understanding visual representations

Visualizing representations

 
Backpropagation networks and “deconvolution”

Representations: equivalence & transformations

69

Compute derivatives using the chain rule

Backpropagation 70

c1 c2 c3 c4 c5 f6 f7 f8 loss

bike

error

w1 w2 w3 w4 w5 w6 w7 w8

ℝx
forward

derror
dw1

derror
dw2

derror
dw3

derror
dw4

derror
dw5

derror
dw6

derror
dw7

derror
dw8

backward

Chain rule: scalar version 71

f1 f2 fn-1 fn
xnx1

…
x0 xn-1

Chain rule: scalar version 72

xn x1
…

x0xn-1

…

…

A composition of n functions

Derivative ← chain rule

E.g. linear convolution = bank of 3D filters

Tensor-valued functions 73

height width channels instances

input x H W C 1 or N

filters F Hf Wf C K

output y H - Hf + 1 W - Wf + 1 K 1 or N

Vector representation 74

3D tensors

vectors

vec

Derivative of tensor-valued functions 75

Derivative (Jacobian): every output element w.r.t. every input element!

The vec operator 
allows us to use  
a familiar matrix notation  
for the derivatives

Using vec() and matrix notation

Chain rule: tensor version 76

xn x1
…

x0xn-1

…

…

The (unbearable) size of tensor derivatives 77

32 ⨉ 32 ⨉ 512

32 ⨉ 32 ⨉ 512

275 B elements

1 TB of memory 
required !!

The size of these Jacobian matrices is huge. Example:

Unless the output is a scalar 78

Now the Jacobian has the same size as x. Example:

1 ⨉ 1 ⨉ 1

32 ⨉ 32 ⨉ 512

Just 2MB of
memory

524K elements

Scalar
This is always the case  
if the last layer 
is the loss function

Assume that xn is a scalar (e.g. loss)

Backpropagation 79

xn x1
…

x0xn-1

…

…

uber matrices 
do not explicitly compute

small  
explicitly compute

compute this first !

Assume that xn is a scalar (e.g. loss)

Backpropagation 80

xn x1
…

x0xn-1

…

…

uber matrices 
do not explicitly compute

small  
explicitly compute

Assume that xn is a scalar (e.g. loss)

Backpropagation 81

xn x1
…

x0xn-1

uber matrix 
do not explicitly compute

small  
explicitly compute

Assume that xn is a scalar (e.g. loss)

Backpropagation 82

xn x1
…

x0xn-1

small  
explicitly compute

The “BP-reversed” layer

Projected function derivative 83

z y x

function  
projected  

onto p projected  
function  

derivative

An “equivalent circuit” is obtained by introducing a transposed function fT

=

Anatomy of a building block 84

vl_nnconv

W, b

x y

 y = vl_nnconv(x, W, b)

 forward (eval)

Anatomy of a building block 85

vl_nnconv

W, b

x
y

z() z 𝜖 ℝ

 forward (eval)

 y = vl_nnconv(x, W, b)

Anatomy of a building block 86

vl_nnconv

W, b

x
y

z 𝜖 ℝ

 forward (eval)

 y = vl_nnconv(x, W, b)

Anatomy of a building block 87

vl_nnconv

W, b

x
y

 y = vl_nnconv(x, W, b)

z 𝜖 ℝ

vl_nnconv
dz

dy
dz

dx

dz

dW

dz

db

 dzdx = vl_nnconv(x, W, b, dzdy)

 backward (backprop)

 forward (eval)

BP induces a “reversed” network

Backpropagation network 88

xn x1
…

x0xn-1

dxn dx1
…

dx0dxn-1

where Note: the BP network is linear 
in dx1, …, dxn-1,dxn. Why?

BP induces a “transposed” network

Backpropagation network 89

xnx1
…

x0 xn-1

dxndx1
…

dx0 dxn-1

forward

backward

Conv, ReLU, MP and their transposed blocks

Backpropagation network 90

conv ReLU MP
x0 x3

convBP ReLUBP MPBP
dx1dx0 dx2

forward

backward

x1 x2

dx3
…

…

…

Usually much less information is needed

Sufficient statistics and bottlenecks 91

conv ReLU MP
x0 x3

convBP ReLUBP MPBP
dx1dx0 dx2

forward

backward

x1 x2

dx3
…

…

…

on/off  
masknothing!

pooling  
switches

Modified backpropagation networks

Three visualisation techniques 92

conv ReLU MP
x0 x3

convBP ReLUBP MPBP
dx1dx0 dx2

x1 x2

dx3
…

…

…

on/off  
masknothing!

pooling  
switches

convBP ReLU MPBP
dx1dx0 dx2 dx3

…

convBP ReLU + 
ReLUBP MPBP

dx1dx0 dx2 dx3
…

SaliNet 
Equiv. to  

[Simonyian et al. 14]

DeConvNet 
Same as 

[Zeiler Fergus 14]

DeSaliNet 
[Mahendran Vedaldi 16, 
Springenberg et al. 15]

Results 93

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

ECCV
#1160

ECCV
#1160

ECCV-16 submission ID 1160 11

———- VGG-VD Pool5 3 ———- ———- VGG-VD FC8 ———-
Image DeConvNet SaliNet DeSaliNet DeConvNet SaliNet DeSaliNet

Fig. 6: Foreground object selectivity. This figure compares the response of DeConvNet,
SaliNet, and DeSaliNet by visualizing the most active neuron in Pool5 3 and FC8
of VGG-VD. SaliNet and DeSaliNet tend to emphasize more foreground objects (see
e.g. the faces of people), whereas DeConvNet’s response is nearly uniform. Note that
the apparent spatial selectivity of Pool5 3 is due to the finite support of the neuron and
is content independent. Best viewed on screen.

of the Fourier transform with a random signal but preserves the phase, then the recon-
structed image ˆ

x “ F´1
r|Y p!x,!yq|ei=Xp!

x

,!
y

q
s still contains the structure (edges)

of x and very little of y is recognizable. In fact the resulting image, an example of which
is shown in fig. 7, is not dissimilar from the output of DeConvNet and DeSaliNet.

In the Fourier transform, changing the phase of a spectral component Aejp!x`✓q by
�✓ amounts to shifting it by ´�✓{!. Furthermore, negating the signal is equivalent to
a phase shift of ⇡. In the deconvolutional architectures, the max pooling switches record
the location of filter activations, whereas the ReLUs applied in the backward direction
contribute to reconstructing the polarity. More precisely, in the forward pass the ReLU
block computes y “ maxt0, xu. In the backward direction, the signal ŷ is propagated
towards the input as follows:

x̂ “ maxtŷ, 0u (in DeConvNet), x̂ “ maxtŷ, 0u d rx ° 0s (in DeSaliNet). (10)

We see that both constructions guarantee that the polarity of the backward signal x̂ is the
same as the polarity of the forward signal y, which is non negative. In fact, DeConvNet

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

ECCV
#1160

ECCV
#1160

ECCV-16 submission ID 1160 11

———- VGG-VD Pool5 3 ———- ———- VGG-VD FC8 ———-
Image DeConvNet SaliNet DeSaliNet DeConvNet SaliNet DeSaliNet

Fig. 6: Foreground object selectivity. This figure compares the response of DeConvNet,
SaliNet, and DeSaliNet by visualizing the most active neuron in Pool5 3 and FC8
of VGG-VD. SaliNet and DeSaliNet tend to emphasize more foreground objects (see
e.g. the faces of people), whereas DeConvNet’s response is nearly uniform. Note that
the apparent spatial selectivity of Pool5 3 is due to the finite support of the neuron and
is content independent. Best viewed on screen.

of the Fourier transform with a random signal but preserves the phase, then the recon-
structed image ˆ

x “ F´1
r|Y p!x,!yq|ei=Xp!

x

,!
y

q
s still contains the structure (edges)

of x and very little of y is recognizable. In fact the resulting image, an example of which
is shown in fig. 7, is not dissimilar from the output of DeConvNet and DeSaliNet.

In the Fourier transform, changing the phase of a spectral component Aejp!x`✓q by
�✓ amounts to shifting it by ´�✓{!. Furthermore, negating the signal is equivalent to
a phase shift of ⇡. In the deconvolutional architectures, the max pooling switches record
the location of filter activations, whereas the ReLUs applied in the backward direction
contribute to reconstructing the polarity. More precisely, in the forward pass the ReLU
block computes y “ maxt0, xu. In the backward direction, the signal ŷ is propagated
towards the input as follows:

x̂ “ maxtŷ, 0u (in DeConvNet), x̂ “ maxtŷ, 0u d rx ° 0s (in DeSaliNet). (10)

We see that both constructions guarantee that the polarity of the backward signal x̂ is the
same as the polarity of the forward signal y, which is non negative. In fact, DeConvNet

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

ECCV
#1160

ECCV
#1160

ECCV-16 submission ID 1160 11

———- VGG-VD Pool5 3 ———- ———- VGG-VD FC8 ———-
Image DeConvNet SaliNet DeSaliNet DeConvNet SaliNet DeSaliNet

Fig. 6: Foreground object selectivity. This figure compares the response of DeConvNet,
SaliNet, and DeSaliNet by visualizing the most active neuron in Pool5 3 and FC8
of VGG-VD. SaliNet and DeSaliNet tend to emphasize more foreground objects (see
e.g. the faces of people), whereas DeConvNet’s response is nearly uniform. Note that
the apparent spatial selectivity of Pool5 3 is due to the finite support of the neuron and
is content independent. Best viewed on screen.

of the Fourier transform with a random signal but preserves the phase, then the recon-
structed image ˆ

x “ F´1
r|Y p!x,!yq|ei=Xp!

x

,!
y

q
s still contains the structure (edges)

of x and very little of y is recognizable. In fact the resulting image, an example of which
is shown in fig. 7, is not dissimilar from the output of DeConvNet and DeSaliNet.

In the Fourier transform, changing the phase of a spectral component Aejp!x`✓q by
�✓ amounts to shifting it by ´�✓{!. Furthermore, negating the signal is equivalent to
a phase shift of ⇡. In the deconvolutional architectures, the max pooling switches record
the location of filter activations, whereas the ReLUs applied in the backward direction
contribute to reconstructing the polarity. More precisely, in the forward pass the ReLU
block computes y “ maxt0, xu. In the backward direction, the signal ŷ is propagated
towards the input as follows:

x̂ “ maxtŷ, 0u (in DeConvNet), x̂ “ maxtŷ, 0u d rx ° 0s (in DeSaliNet). (10)

We see that both constructions guarantee that the polarity of the backward signal x̂ is the
same as the polarity of the forward signal y, which is non negative. In fact, DeConvNet

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

ECCV
#1160

ECCV
#1160

ECCV-16 submission ID 1160 11

———- VGG-VD Pool5 3 ———- ———- VGG-VD FC8 ———-
Image DeConvNet SaliNet DeSaliNet DeConvNet SaliNet DeSaliNet

Fig. 6: Foreground object selectivity. This figure compares the response of DeConvNet,
SaliNet, and DeSaliNet by visualizing the most active neuron in Pool5 3 and FC8
of VGG-VD. SaliNet and DeSaliNet tend to emphasize more foreground objects (see
e.g. the faces of people), whereas DeConvNet’s response is nearly uniform. Note that
the apparent spatial selectivity of Pool5 3 is due to the finite support of the neuron and
is content independent. Best viewed on screen.

of the Fourier transform with a random signal but preserves the phase, then the recon-
structed image ˆ

x “ F´1
r|Y p!x,!yq|ei=Xp!

x

,!
y

q
s still contains the structure (edges)

of x and very little of y is recognizable. In fact the resulting image, an example of which
is shown in fig. 7, is not dissimilar from the output of DeConvNet and DeSaliNet.

In the Fourier transform, changing the phase of a spectral component Aejp!x`✓q by
�✓ amounts to shifting it by ´�✓{!. Furthermore, negating the signal is equivalent to
a phase shift of ⇡. In the deconvolutional architectures, the max pooling switches record
the location of filter activations, whereas the ReLUs applied in the backward direction
contribute to reconstructing the polarity. More precisely, in the forward pass the ReLU
block computes y “ maxt0, xu. In the backward direction, the signal ŷ is propagated
towards the input as follows:

x̂ “ maxtŷ, 0u (in DeConvNet), x̂ “ maxtŷ, 0u d rx ° 0s (in DeSaliNet). (10)

We see that both constructions guarantee that the polarity of the backward signal x̂ is the
same as the polarity of the forward signal y, which is non negative. In fact, DeConvNet

They are largely not neuron selective

Key limitation of DeConvNets and similar 94

Bad for studying individual neurons 
(use inversion, act. max., etc. instead)

Good for saliency

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

ECCV
#1160

ECCV
#1160

ECCV-16 submission ID 1160 9

pool5 fc8 pool5 fc8 pool5 fc8
R

nd
.n

oi
se

R
nd

.n
eu

ro
n

M
ax

ne
ur

on

— DeConvNet — — DeSaliNet — — SaliNet —

Fig. 4: Lack of neuron selectivity. The bottleneck information r is fixed to the one com-
puted during the forward pass �pxq through AlexNet and the output of �:

pe, rq is com-
puted by choosing e as: the most active neuron (top row), a second neuron at random
(middle), or as a positive random mixture of all neurons (bottom row). Results barely
differ, particularly for the deeper layers. See figure 1 for the original house input image
x. Best viewed on screen.

interpreted as a direct characterization of a neuron or not. This is answered next.

Neuron/channel selectivity (or lack thereof). If the output of �:
pei, rq is a direct char-

acterization of the i-th neuron, we would expect the generated image to meaningfully

change as the input ei to the deconvolutional network changes.
In Fig. 4, DeConvNet, DeSaliNet, and SaliNet are used to visualize the responses of

different neurons at the center of the image. The reversed function �:
pe, rq is evaluated

by keeping r fixed (as obtained from the forward pass �px0q) and by replacing e with
either: the indicator vector e˚ of the neuron that has the maximal response, a second
random neuron e

1 that still generates a non-zero image, and a random non-negative
vector e. It can be noted that, particularly in deeper layers, the response changes very
little with different choices of e, and what changes there are do not have an obvious
meaning.

A clear difference between images from different depths (e.g. pool5 vs fc8 in Fig. 4
and 6) is the extent of the response, which however corresponds to the neuron support
and depends on the architecture and not on the learned network weights or data. This
is further confirmed in Fig. 5 by considering a network with random weights. There
it is also shown that renormalizing the image intensities reveal the full neuron sup-
port, which is only partially suppressed in the visualization, and in a manner which is
architecture-dependent rather than weight or data depended.

We conclude that the reversed architectures �:
pe, rq are mainly dependent on the

bottleneck information r rather than the neuron selector e. Hence, they provide poor
direct characterizations of neurons, and particularly of deep ones.

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

ECCV
#1160

ECCV
#1160

ECCV-16 submission ID 1160 9

pool5 fc8 pool5 fc8 pool5 fc8
R

nd
.n

oi
se

R
nd

.n
eu

ro
n

M
ax

ne
ur

on

— DeConvNet — — DeSaliNet — — SaliNet —

Fig. 4: Lack of neuron selectivity. The bottleneck information r is fixed to the one com-
puted during the forward pass �pxq through AlexNet and the output of �:

pe, rq is com-
puted by choosing e as: the most active neuron (top row), a second neuron at random
(middle), or as a positive random mixture of all neurons (bottom row). Results barely
differ, particularly for the deeper layers. See figure 1 for the original house input image
x. Best viewed on screen.

interpreted as a direct characterization of a neuron or not. This is answered next.

Neuron/channel selectivity (or lack thereof). If the output of �:
pei, rq is a direct char-

acterization of the i-th neuron, we would expect the generated image to meaningfully

change as the input ei to the deconvolutional network changes.
In Fig. 4, DeConvNet, DeSaliNet, and SaliNet are used to visualize the responses of

different neurons at the center of the image. The reversed function �:
pe, rq is evaluated

by keeping r fixed (as obtained from the forward pass �px0q) and by replacing e with
either: the indicator vector e˚ of the neuron that has the maximal response, a second
random neuron e

1 that still generates a non-zero image, and a random non-negative
vector e. It can be noted that, particularly in deeper layers, the response changes very
little with different choices of e, and what changes there are do not have an obvious
meaning.

A clear difference between images from different depths (e.g. pool5 vs fc8 in Fig. 4
and 6) is the extent of the response, which however corresponds to the neuron support
and depends on the architecture and not on the learned network weights or data. This
is further confirmed in Fig. 5 by considering a network with random weights. There
it is also shown that renormalizing the image intensities reveal the full neuron sup-
port, which is only partially suppressed in the visualization, and in a manner which is
architecture-dependent rather than weight or data depended.

We conclude that the reversed architectures �:
pe, rq are mainly dependent on the

bottleneck information r rather than the neuron selector e. Hence, they provide poor
direct characterizations of neurons, and particularly of deep ones.

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

ECCV
#1160

ECCV
#1160

ECCV-16 submission ID 1160 9

pool5 fc8 pool5 fc8 pool5 fc8
R

nd
.n

oi
se

R
nd

.n
eu

ro
n

M
ax

ne
ur

on

— DeConvNet — — DeSaliNet — — SaliNet —

Fig. 4: Lack of neuron selectivity. The bottleneck information r is fixed to the one com-
puted during the forward pass �pxq through AlexNet and the output of �:

pe, rq is com-
puted by choosing e as: the most active neuron (top row), a second neuron at random
(middle), or as a positive random mixture of all neurons (bottom row). Results barely
differ, particularly for the deeper layers. See figure 1 for the original house input image
x. Best viewed on screen.

interpreted as a direct characterization of a neuron or not. This is answered next.

Neuron/channel selectivity (or lack thereof). If the output of �:
pei, rq is a direct char-

acterization of the i-th neuron, we would expect the generated image to meaningfully

change as the input ei to the deconvolutional network changes.
In Fig. 4, DeConvNet, DeSaliNet, and SaliNet are used to visualize the responses of

different neurons at the center of the image. The reversed function �:
pe, rq is evaluated

by keeping r fixed (as obtained from the forward pass �px0q) and by replacing e with
either: the indicator vector e˚ of the neuron that has the maximal response, a second
random neuron e

1 that still generates a non-zero image, and a random non-negative
vector e. It can be noted that, particularly in deeper layers, the response changes very
little with different choices of e, and what changes there are do not have an obvious
meaning.

A clear difference between images from different depths (e.g. pool5 vs fc8 in Fig. 4
and 6) is the extent of the response, which however corresponds to the neuron support
and depends on the architecture and not on the learned network weights or data. This
is further confirmed in Fig. 5 by considering a network with random weights. There
it is also shown that renormalizing the image intensities reveal the full neuron sup-
port, which is only partially suppressed in the visualization, and in a manner which is
architecture-dependent rather than weight or data depended.

We conclude that the reversed architectures �:
pe, rq are mainly dependent on the

bottleneck information r rather than the neuron selector e. Hence, they provide poor
direct characterizations of neurons, and particularly of deep ones.

Understanding visual representations

Visualizing representations

 
Backpropagation networks and “deconvolution”

Representations: equivalence & transformations

95

When are two representations the same?

 Learning representations means that there is an endless number of them

 Variants obtained by learning on different datasets, or different local optima

96

CNN-A

CNN-B
x

Equivalence
ΦB(x) = E ΦA(x)

E

Equivalence

AlexNet, same training data, different parametrization:

97

CNN-A

1 2 3 4 5 FC

CNN-B

1 2 3 4 5 6

ΦA ΦB

Are ΦA and ΦB equivalent ?

Equivalence

AlexNet, same training data, different parametrization:

98

CNN-A

1 2 3 4

5 FC

CNN-B

1 2 3 4

5 6❋ E Classif. 
loss

label

Train with SGD

Equivalence with different random seeds

Baseline

Before training

99

To
p-

5
E

rr
or

 [%
]

0

25

50

75

100

1 2 3 4 5 FCx

1 2 3 4 5 FCgx

After training

E1 2 3 4 5 FCgx

1 2345

Econv1

12 3 45

Econv2

123 45

Econv3

1234 5

Econv4

12345

Econv5

EAlexNet 
A

AlexNet 
B

Train on two different datasets

Equivalence of similar architecture 100

Places datasetILSVRC12 dataset

CNN-IMNET CNN-PLACES

1 2 3 4 5 FC1 2 3 4 5 6

Equivalence with different training data

Baseline

Naive stitching

101

To
p-

5
E

rr
or

 [%
]

0

25

50

75

100

1 2 3 4 5 FCx

1 2 3 4 5 FCgx

Learned stitches

E1 2 3 4 5 FCgx

1 2345

Econv1

12 3 45

Econv2

123 45

Econv3

1234 5

Econv4

12345

Econv5

E
Places Image 

Net

Meaningful representations 102

Semantic similarity Vector similarity 
(distance)

representation

x

z

y

embedding space Rd

near
far

congruous
pair

incongruous
pair

Desiderata: 
invariance and distinctiveness

Invariance is task dependent 103

near

far

Are x and y the same category?

Are x and y the same colour?

Equivariance 104

image space feature space

x

x′

gx

gx′

g

g

g is an image transformation

Φ

Φ(gx) = Mg Φ(x)

g is the corresponding 
feature transformation

Φ(gx)
Mg

Φ(x)

Mg

Φ(x′)

Φ(gx′)

Invariance 105

image space feature space

x

x′

gx

gx′

g

g

g is an image transformation

Φ

the map Mg is the identity

g is the corresponding 
feature transformation

Mg

Φ(x) = Φ(gx)

Mg

Φ(x′) = Φ(gx′)

No equivariance 106

image space feature space

x

x′

gx

gx′

g

g

g is an image transformation

Φ

the map Mg does not
exists (or is intractable)

g is the corresponding 
feature transformation

Φ(gx)

Φ(x)

Φ(x′)

Φ(gx′)

Representations and transformations 107

image space feature space

g is an image transformation

Φ(gx) = Mg Φ(x)

Equivariance  
There is a (simple) Mg

Invariance  
Mg is the identity

Neither  
There is no (simple) Mg

Regularized linear regression

An empirical test of equivariance 108

(learned empirically)

Φ(x)Φ Mg Φ(x)Mg ΦΦ(gx)≈

g

Ag Φ(x) + bg

Regularized linear regression

An empirical test of equivariance 109

(learned empirically)

Φ Mg ≈

g

permutation convolution by1⨉1 filter bank

❋ Ag

Φ

Ag Φ(x) + bg

HOG features

An empirical test of equivariance 110

rotation 45 deg

MgΦ ≈

Mg

Mg

Mg

≈

≈

≈

Φ

Φ

Φ

ΦΦ

Φ

Φ

Φ

HOG features

An empirical test of equivariance 111

rotation 45 deg

MgΦ ≈

Mg

Mg

Mg

≈

≈

≈

Φ

Φ

Φ

Φ

Φ

Φ

Φ

1 2 3 4 5 FC

CNN: a sequence of representations

 We run the same analysis on a typical CNN architecture

▶ AlexNet [Krizevsky et al. 12]

▶ 5 convolutional layers + fully-connected layers

▶ Trained on ImageNet ILSVRC

112

dogx

x
Φ Ψ

Φ Ψ

1 2 3 4 5 2 3 4 5 FC
Classif.

error

label

1 2 3 4 5 FC

A discriminative goal to learn equivariance

Mg is learned empirically

All the other layers
(representation and classifier)
are frozen

113

dogx

x

Φ

Ψ

Φ Ψ

1 2 3 4 5

2 3 4 5 FC
Classif.

error

label

Mgg-1

Vertical flips

Uncompensated, no TF

Uncompensated, TF

114

To
p-

5
E

rr
or

 [%
]

0

15

30

45

60

1 2 3 4 5 FCx

1 2 3 4 5 FCgx

Compensated TF w perm.

Compensated TF, learned

1 2 3 4 5 FCgx

∗1 2 3 4 5 FCgx 1 2345

Mgconv1

12 3 45

Mgconv2

123 45

Mgconv3

1234 5

Mgconv4

12345

Mgconv5

g

Summary

 Modern CNNs are still “new” technology
▶ Expect bigger and meaner CNNs to further improve performance
▶ CNNs are more than big balls of parameters
▶ We do not really understand what they do

 Understanding deep nets
▶ What do deep networks do?
▶ Are there computational / statistical principles to be learned?
▶ How much do deep nets learn about the visual world?

 Possible angles
▶ Visualisations
▶ Probing statistical properties

115

