Understanding CNNs using visualisation and transformation analysis Andrea Vedaldi

Medical Imaging Summer School

August 2016

Image representations

An encoder maps the data into a vectorial representation

Facilitate labelling of images, text, sound, videos, ...

Modern convolutional nets

Excellent **performance** in image understanding tasks

Learn a sequence of **general-purpose representations** Millions of parameters learned from data

The "meaning" of the representation is unclear

Understanding visual representations

Visualizing representations

Backpropagation networks and "deconvolution"

Representations: equivalence & transformations

Visualization: Pre-Image

Visualization: Pre-Image

The reconstruction ambiguity **provides useful information about the representation**

Finding a Pre-Image

A simple yet general and effective method

$$\min_{\mathbf{x}} \|\Phi(\mathbf{x}) - \Phi_0\|_2^2$$

Start from random noise

Optimize using stochastic gradient descent

Finding a Pre-Image

A simple yet general and effective method

$$\min_{\mathbf{x}} \|\Phi(\mathbf{x}) - \Phi_0\|_2^2$$

Related Work

Analysis tools

Visualizing higher-layer features of a deep network Ethan et al. 2009 [intermediate features]

Deep inside convolutional networks Simonyan et al. 2014 [deepest features, aka "deep dreams"]

DeConvNets Zeiler et al. In ECCV, 2014 [intermediate features]

Understanding neural networks through deep visualisation Yosinksi et al. 2015 [intermediate features]

Artistic tools

Google's "inceptionsm" Mordvintsev et al. 2015

Style synthesis and transfer Gatys et al. 2015

Original Image

Original Image

Original Image

Inverting a Deep CNN

CNNs = visual codes?

Activation Maximization

Look for an image that maximally activates a **specific feature component**

$$\min_{\mathbf{x}} - \langle \mathbf{e}_k, \Phi(\mathbf{x}) \rangle + R_{TV}(\mathbf{x}) + R_{\alpha}(\mathbf{x})$$

Remember: the starting point is white noise

Not an image!

conv3

Network comparison

"conv5" features

AlexNet

VGG-M

VGG-VD

Caricaturization

[Google Inceptionism 2015, Mahendran et al. 2016]

Emphasise patterns that are detected by a certain representation

$$\min_{\mathbf{x}} - \langle \Phi(\mathbf{x}_0), \Phi(\mathbf{x})
angle + R_{TV}(\mathbf{x}) + R_{lpha}(\mathbf{x})$$

Key differences:

- ► the starting point **is** the image **x**₀
- particular configurations of features are emphasized, not individual features

Caricaturization (VGG-M)

input

conv3

conv4

Caricaturization (VGG-M)

conv5

Interlude: neural art

Surprisingly, the filters learned by discriminative neural networks capture well the "style" of an image.

This can be used to transfer the style of an image (e.g. a painting) to any other.

Optimisation based

L. A. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis and the controlled generation of natural stimuli using convolutional neural networks. In Proc. NIPS, 2015.

Feed-forward neural network equivalents

D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky. Texture networks: Feedforward synthesis of textures and stylized images. Proc. ICML, 2016.

J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In Proc. ECCV, 2016.

Generation by moment matching

53

Moment matching

- Content statistics: same as inversion
- Style statistics: cross-channel correlations

 $\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x}} E(\mathbf{x}; \mathbf{x}_{\operatorname{content}}, \mathbf{x}_{\operatorname{style}})$

Understanding visual representations

Visualizing representations

Backpropagation networks and "deconvolution"

Representations: equivalence & transformations

Backpropagation

Compute derivatives using the chain rule

Chain rule: scalar version

Chain rule: scalar version

A composition of *n* functions

Derivative ← chain rule
Tensor-valued functions

E.g. linear convolution = bank of 3D filters

$$\mathbf{y} = F * \mathbf{x} + b$$

	height	width	channels	instances
input x	Н	W	С	1 or N
filters F	H _f	Ŵf	С	K
output y	H - H _f + 1	W - W _f + 1	K	1 or N

Vector representation

Derivative of tensor-valued functions

Derivative (Jacobian): every output element w.r.t. every input element!

Chain rule: tensor version

Using vec() and matrix notation

The (unbearable) size of tensor derivatives

The size of these Jacobian matrices is **huge**. Example:

Unless the output is a scalar

Now the Jacobian has the same size as **x**. Example:

Projected function derivative

The "BP-reversed" layer

An "equivalent circuit" is obtained by introducing a transposed function f^T

forward (eval)

 $y = vl_nnconv(x, W, b)$

$$y = vl_nnconv(x, W, b)$$

$$y = vl_nnconv(x, W, b)$$

backward (backprop)

 $dzdx = vl_nnconv(x, W, b, dzdy)$

Backpropagation network

BP induces a "reversed" network

where
$$d\mathbf{x}_i = \frac{df_n \circ \cdots \circ f_{i+1}}{d \operatorname{vec} \mathbf{x}_i}$$

Note: the BP network is linear in $d\mathbf{x}_1, ..., d\mathbf{x}_{n-1}, d\mathbf{x}_n$. Why?

Backpropagation network

BP induces a "transposed" network

forward

backward

Backpropagation network

Conv, ReLU, MP and their transposed blocks

forward

backward

Sufficient statistics and bottlenecks

Usually much less information is needed

forward

backward

Three visualisation techniques

Modified backpropagation networks

Results

Key limitation of DeConvNets and similar

They are largely *not* neuron selective

Good for saliency

Bad for studying individual neurons (use inversion, act. max., etc. instead)

Understanding visual representations

Visualizing representations

Backpropagation networks and "deconvolution"

Representations: equivalence & transformations

When are two representations the same?

Learning representations means that there is an endless number of them

Variants obtained by learning on different datasets, or different local optima

Equivalence

AlexNet, same training data, different parametrization:

CNN-B

Equivalence

AlexNet, same training data, different parametrization:

Equivalence with different random seeds

99

Equivalence of similar architecture

Train on two different datasets

ILSVRC12 dataset

Places dataset

CNN-PLACES

1	2	3	4	5	FC
---	---	---	---	---	----

Equivalence with different training data

101

Meaningful representations

Invariance is task dependent

Are **x** and **y** the same category?

Are **x** and **y** the same colour?

Equivariance

g is an image transformation

g is the corresponding feature transformation

$$\Phi(g\mathbf{x}) = \mathsf{M}_g \, \Phi(\mathbf{x})$$

Invariance

g is an image transformation

g is the corresponding feature transformation

the map Mg is the identity

No equivariance

g is an image transformation

g is the corresponding feature transformation

the map M_g does not exists (or is intractable)

Representations and transformations

 $\Phi(g\mathbf{x}) = \mathsf{M}_g \, \Phi(\mathbf{x})$

An empirical test of equivariance

Regularized linear regression

An empirical test of equivariance

Regularized linear regression

g

An empirical test of equivariance

HOG features

rotation 45 deg

110

An empirical test of equivariance

HOG features

rotation 45 deg

CNN: a sequence of representations

We run the same analysis on a typical CNN architecture

- AlexNet [Krizevsky et al. 12]
- 5 convolutional layers + fully-connected layers
- Trained on ImageNet ILSVRC

A discriminative goal to learn equivariance

113

Vertical flips

Mg^{conv5}

12345

Summary

Modern CNNs are still "new" technology

- Expect bigger and meaner CNNs to further improve performance
- CNNs are more than big balls of parameters
- We do not really understand what they do

Understanding deep nets

- What do deep networks do?
- Are there computational / statistical principles to be learned?
- How much do deep nets learn about the visual world?

Possible angles

- Visualisations
- Probing statistical properties